Implicit stereotypeAn implicit bias or implicit stereotype is the pre-reflective attribution of particular qualities by an individual to a member of some social out group. Implicit stereotypes are thought to be shaped by experience and based on learned associations between particular qualities and social categories, including race and/or gender. Individuals' perceptions and behaviors can be influenced by the implicit stereotypes they hold, even if they are sometimes unaware they hold such stereotypes.
Analyse appliquée du comportementL'analyse du comportement appliquée, siglée ABA, en anglais Applied Behavior Analysis, se définit comme la science dans laquelle les techniques dérivées du béhaviorisme sont appliquées systématiquement afin d'améliorer des comportements socialement significatifs, et dans laquelle l'expérimentation est utilisée pour identifier les variables explicatives du comportement. L'analyse appliquée du comportement a remplacé la modification du comportement » (behavior modification) car cette dernière approche tentait de changer le comportement sans clarifier les interactions sous-jacentes avec l'environnement.
Vanishing gradient problemIn machine learning, the vanishing gradient problem is encountered when training artificial neural networks with gradient-based learning methods and backpropagation. In such methods, during each iteration of training each of the neural networks weights receives an update proportional to the partial derivative of the error function with respect to the current weight. The problem is that in some cases, the gradient will be vanishingly small, effectively preventing the weight from changing its value.
Méthode du gradient conjuguévignette|Illustration de la méthode du gradient conjugué. En analyse numérique, la méthode du gradient conjugué est un algorithme pour résoudre des systèmes d'équations linéaires dont la matrice est symétrique définie positive. Cette méthode, imaginée en 1950 simultanément par Cornelius Lanczos, Eduard Stiefel et Magnus Hestenes, est une méthode itérative qui converge en un nombre fini d'itérations (au plus égal à la dimension du système linéaire).
Convergence de variables aléatoiresDans la théorie des probabilités, il existe différentes notions de convergence de variables aléatoires. La convergence (dans un des sens décrits ci-dessous) de suites de variables aléatoires est un concept important de la théorie des probabilités utilisé notamment en statistique et dans l'étude des processus stochastiques. Par exemple, la moyenne de n variables aléatoires indépendantes et identiquement distribuées converge presque sûrement vers l'espérance commune de ces variables aléatoires (si celle-ci existe).
Professional practice of behavior analysisThe professional practice of behavior analysis is a domain of behavior analysis, the others being radical behaviorism, experimental analysis of behavior and applied behavior analysis. The practice of behavior analysis is the delivery of interventions to consumers that are guided by the principles of radical behaviorism and the research of both experimental and applied behavior analysis. Professional practice seeks to change specific behavior through the implementation of these principles.
Stimulus controlIn behavioral psychology (or applied behavior analysis), stimulus control is a phenomenon in operant conditioning (also called contingency management) that occurs when an organism behaves in one way in the presence of a given stimulus and another way in its absence. A stimulus that modifies behavior in this manner is either a discriminative stimulus (Sd) or stimulus delta (S-delta). Stimulus-based control of behavior occurs when the presence or absence of an Sd or S-delta controls the performance of a particular behavior.
Algorithme du gradientLalgorithme du gradient, aussi appelé algorithme de descente de gradient, désigne un algorithme d'optimisation différentiable. Il est par conséquent destiné à minimiser une fonction réelle différentiable définie sur un espace euclidien (par exemple, , l'espace des n-uplets de nombres réels, muni d'un produit scalaire) ou, plus généralement, sur un espace hilbertien. L'algorithme est itératif et procède donc par améliorations successives. Au point courant, un déplacement est effectué dans la direction opposée au gradient, de manière à faire décroître la fonction.
Fonction d'activationDans le domaine des réseaux de neurones artificiels, la fonction d'activation est une fonction mathématique appliquée à un signal en sortie d'un neurone artificiel. Le terme de "fonction d'activation" vient de l'équivalent biologique "potentiel d'activation", seuil de stimulation qui, une fois atteint entraîne une réponse du neurone. La fonction d'activation est souvent une fonction non linéaire. Un exemple de fonction d'activation est la fonction de Heaviside, qui renvoie tout le temps 1 si le signal en entrée est positif, ou 0 s'il est négatif.
Convergence uniformeLa convergence uniforme d'une suite de fonctions est une forme de convergence plus exigeante que la convergence simple. La convergence devient uniforme quand toutes les suites avancent vers leur limite respective avec une sorte de « mouvement d'ensemble ». Dans le cas de fonctions numériques d'une variable, la notion prend une forme d'« évidence » géométrique : le graphe de la fonction f se « rapproche » de celui de la limite. Soient X un ensemble, (Y, d) un espace métrique, et A un sous-ensemble de X.