Théorème du point fixe de BrouwerEn mathématiques, et plus précisément en topologie algébrique, le théorème du point fixe de Brouwer fait partie de la grande famille des théorèmes de point fixe, qui énoncent que si une fonction continue f vérifie certaines propriétés, alors il existe un point x0 tel que f(x0) = x0. La forme la plus simple du théorème de Brouwer prend comme hypothèse que la fonction f est définie sur un intervalle fermé borné non vide I et à valeurs dans I. Sous une forme plus générale, la fonction est définie sur un convexe compact K d'un espace euclidien et à valeurs dans K.
Invariant estimatorIn statistics, the concept of being an invariant estimator is a criterion that can be used to compare the properties of different estimators for the same quantity. It is a way of formalising the idea that an estimator should have certain intuitively appealing qualities. Strictly speaking, "invariant" would mean that the estimates themselves are unchanged when both the measurements and the parameters are transformed in a compatible way, but the meaning has been extended to allow the estimates to change in appropriate ways with such transformations.
Variables indépendantes et identiquement distribuéesvignette|upright=1.5|alt=nuage de points|Ce nuage de points représente 500 valeurs aléatoires iid simulées informatiquement. L'ordonnée d'un point est la valeur simulée suivante, dans la liste des 500 valeurs, de la valeur simulée pour l'abscisse du point. En théorie des probabilités et en statistique, des variables indépendantes et identiquement distribuées sont des variables aléatoires qui suivent toutes la même loi de probabilité et sont indépendantes. On dit que ce sont des variables aléatoires iid ou plus simplement des variables iid.
AutocovarianceLa fonction d'autocovariance d'un processus stochastique permet de caractériser les dépendances linéaires existant au sein de ce processus. Si est un processus stationnaire au sens faible alors et pour n'importe quels entiers naturels . Dans ce cas et il suffit alors de définir les autocovariances par la fonction qui à tout associe . La fonction d'autocovariance apparaît alors comme la covariance de ce processus avec une version décalée de lui-même. On appelle l'autocovariance d'ordre .
Point fixeEn mathématiques, pour une application f d'un ensemble E dans lui-même, un élément x de E est un point fixe de f si f(x) = x. Exemples : dans le plan, la symétrie par rapport à un point A admet un unique point fixe : A ; l'application inverse (définie sur l'ensemble des réels non nuls) admet deux points fixes : –1 et 1, solutions de l'équation équivalente à l'équation . Graphiquement, les points fixes d'une fonction f (d'une variable réelle, à valeurs réelles) sont les points d'intersection de la droite d'équation y = x avec la courbe d'équation y = f(x).
Liste de théorèmes du point fixeEn analyse, un théorème du point fixe donne des conditions suffisantes d’existence d’un point fixe pour une fonction ou une famille de fonctions. Plus précisément, étant donné un ensemble E et une famille de fonctions f définies sur E et à valeurs dans E, ces théorèmes permettent de justifier qu’il existe un élément x de E tel que pour toutes les fonctions considérées on ait . Certains de ces théorèmes fournissent même un processus itératif permettant d’approcher un tel point fixe.
AutocorrélationL'autocorrélation est un outil mathématique souvent utilisé en traitement du signal. C'est la corrélation croisée d'un signal par lui-même. L'autocorrélation permet de détecter des régularités, des profils répétés dans un signal comme un signal périodique perturbé par beaucoup de bruit, ou bien une fréquence fondamentale d'un signal qui ne contient pas effectivement cette fondamentale, mais l'implique avec plusieurs de ses harmoniques. Note : La confusion est souvent faite entre l'auto-covariance et l'auto-corrélation.
Théorème du point fixe de LefschetzEn mathématiques, le théorème du point fixe de Lefschetz est une formule qui compte le nombre de points fixes d'une application continue d'un espace compact X dans lui-même en utilisant les traces des endomorphismes qu'elle induit sur l'homologie de X. Il est nommé d'après Solomon Lefschetz qui l'a démontré en 1926. Chaque point fixe est compté avec sa multiplicité. Une version faible du théorème suffit à démontrer qu'une application qui n'a aucun point fixe doit vérifier certaines propriétés particulières (comme une rotation du cercle).
Champ aléatoire de MarkovUn champ aléatoire de Markov est un ensemble de variables aléatoires vérifiant une propriété de Markov relativement à un graphe non orienté. C'est un modèle graphique. Soit un graphe non orienté et un ensemble de variables aléatoires indexé par les sommets de . On dit que est un champ aléatoire de Markov relativement à si une des trois propriétés suivantes est vérifiée c'est-à-dire que deux variables aléatoires dont les sommets associés ne sont pas voisins dans le graphe sont indépendantes conditionnellement à toutes les autres variables.
Fixed-point iterationIn numerical analysis, fixed-point iteration is a method of computing fixed points of a function. More specifically, given a function defined on the real numbers with real values and given a point in the domain of , the fixed-point iteration is which gives rise to the sequence of iterated function applications which is hoped to converge to a point . If is continuous, then one can prove that the obtained is a fixed point of , i.e., More generally, the function can be defined on any metric space with values in that same space.