Gravité quantiqueLa gravité quantique est une branche de la physique théorique tentant d'unifier la mécanique quantique et la relativité générale. Une telle théorie permettrait notamment de comprendre les phénomènes impliquant de grandes quantités de matière ou d'énergie sur de petites dimensions spatiales, tels que les trous noirs ou l'origine de l'Univers. L'approche générale utilisée pour obtenir une théorie de la gravité quantique est, présumant que la théorie sous-jacente doit être simple et élégante, d'examiner les symétries et indices permettant de combiner mécanique quantique et la relativité générale en une théorie globale unifiée.
Théorie quantique des champsvignette|296x296px|Ce diagramme de Feynman représente l'annihilation d'un électron et d'un positron, qui produit un photon (représenté par une ligne ondulée bleue). Ce photon se décompose en une paire quark-antiquark, puis l'antiquark émet un gluon (représenté par la courbe verte). Ce type de diagramme permet à la fois de représenter approximativement les processus physiques mais également de calculer précisément leurs propriétés, comme la section efficace de collision.
Mécanique quantiqueLa mécanique quantique est la branche de la physique théorique qui a succédé à la théorie des quanta et à la mécanique ondulatoire pour étudier et décrire les phénomènes fondamentaux à l'œuvre dans les systèmes physiques, plus particulièrement à l'échelle atomique et subatomique. Elle fut développée dans les années 1920 par une dizaine de physiciens européens, pour résoudre des problèmes que la physique classique échouait à expliquer, comme le rayonnement du corps noir, l'effet photo-électrique, ou l'existence des raies spectrales.
Symétrie (transformation géométrique)Une symétrie géométrique est une transformation géométrique involutive qui conserve le parallélisme. Parmi les symétries courantes, on peut citer la réflexion et la symétrie centrale. Une symétrie géométrique est un cas particulier de symétrie. Il existe plusieurs sortes de symétries dans le plan ou dans l’espace. Remarque : Le terme de symétrie possède aussi un autre sens en mathématiques. Dans l'expression groupe de symétrie, une symétrie désigne une isométrie quelconque.
Boson vecteurEn physique des particules, un boson vecteur est un boson de spin égal à 1. Les bosons vecteurs considérés comme particules élémentaires dans le modèle standard sont les bosons de jauge, porteurs de force des interactions fondamentales : le photon de l'électromagnétisme, les bosons W et Z de l'interaction faible et les gluons de l'interaction forte. Certaines particules composites sont des bosons vecteurs, par exemple n'importe quel méson vecteur (quark et antiquark).
Conformal groupIn mathematics, the conformal group of an inner product space is the group of transformations from the space to itself that preserve angles. More formally, it is the group of transformations that preserve the conformal geometry of the space. Several specific conformal groups are particularly important: The conformal orthogonal group. If V is a vector space with a quadratic form Q, then the conformal orthogonal group CO(V, Q) is the group of linear transformations T of V for which there exists a scalar λ such that for all x in V For a definite quadratic form, the conformal orthogonal group is equal to the orthogonal group times the group of dilations.
Interaction fortethumb|250px|alt=Représentation des quarks dans un proton : deux quarks Up et un quark Down, chacun d'un couleur différente, liés par l'interaction forte.|L'interaction forte lie les quarks dans les nucléons, ici dans un proton. L'interaction forte, ou force forte, appelée parfois force de couleur, ou interaction nucléaire forte, est l'une des trois interactions entre particules élémentaires de la matière dans le modèle standard aux côtés de l'interaction électromagnétique et de l'interaction faible.
BosonEn mécanique quantique, un boson est une particule subatomique de spin entier qui obéit à la statistique de Bose-Einstein. Le théorème spin-statistique différencie les bosons des fermions, qui ont un spin demi-entier. La famille des bosons inclut des particules élémentaires : les photons, les gluons, les bosons Z et W (ce sont les quatre bosons de jauge du modèle standard), le boson de Higgs (découvert en 2012), et le graviton encore théorique ; ainsi que des particules composites (les mésons et les noyaux qui ont un nombre de masse pair comme le deutérium, l'hélium 4 ou le plomb 208) ; et quelques quasi-particules (paires de Cooper, plasmons et phonons).
Lagrangien (théorie des champs)La théorie lagrangienne des champs est un formalisme de la théorie classique des champs. C'est l'analogue de la théorie des champs de la mécanique lagrangienne. La mécanique lagrangienne est utilisée pour analyser le mouvement d'un système de particules discrètes chacune ayant un nombre fini de degrés de liberté. La théorie lagrangienne des champs s'applique aux continus et aux champs, qui ont un nombre infini de degrés de liberté.
Scalar bosonA scalar boson is a boson whose spin equals zero. A boson is a particle whose wave function is symmetric under particle exchange and therefore follows Bose–Einstein statistics. The spin–statistics theorem implies that all bosons have an integer-valued spin. Scalar bosons are the subset of bosons with zero-valued spin. The name scalar boson arises from quantum field theory, which demands that fields of spin-zero particles transform like a scalar under Lorentz transformation (i.e. are Lorentz invariant).