Matrice inversibleEn mathématiques et plus particulièrement en algèbre linéaire, une matrice inversible (ou régulière ou encore non singulière) est une matrice carrée A pour laquelle il existe une matrice B de même taille n avec laquelle les produits AB et BA sont égaux à la matrice identité. Dans ce cas la matrice B est unique, appelée matrice inverse de A et notée B = A. Cette définition correspond à celle d’élément inversible pour la multiplication dans l’anneau des matrices carrées associé.
Branche principale (mathématiques)En analyse complexe, la branche principale est une détermination particulière d'une fonction analytique complexe multiforme, telle que la fonction racine n-ième ou le logarithme complexe. Cette détermination arbitraire est souvent choisie de façon à coïncider avec une fonction de la variable réelle, c'est-à-dire que la restriction de la branche principale à R prend des valeurs réelles. Une façon de visualiser la branche principale d'une fonction est de considérer ce qui se passe avec la réciproque de la fonction exponentielle complexe.
Nombre positifUn nombre positif est un nombre qui est supérieur à zéro, par exemple 3 ou e. En dehors des textes mathématiques, lorsqu'on parle de nombres positifs ou négatifs, le nombre zéro est généralement exclu. Ainsi le dictionnaire Lexis précise : . L'Académie française, dans la neuvième édition de son dictionnaire précise quant à elle qu'un nombre positif est un nombre . En français, le nombre zéro est considéré tantôt comme étant à la fois positif et négatif, tantôt comme n'étant ni positif, ni négatif.
Compactification (mathématiques)vignette|Exemple de compactification En topologie, la compactification est un procédé général de plongement d'un espace topologique comme sous-espace dense d'un espace compact. Le plongement est appelé le compactifié. Un tel plongement existe si et seulement si l'espace est complètement régulier.
Transformation de CayleyEn mathématiques, la transformation de Cayley, nommée d'après Arthur Cayley, possède différentes significations voisines. La définition originale est celle d'une application entre les matrices antisymétriques et les matrices de rotation. En analyse complexe, la transformation de Cayley est une application conforme envoyant le demi-plan complexe supérieur sur le disque unité. Enfin, dans la théorie des espaces de Hilbert, c'est une application entre opérateurs linéaires.