Ordre totalEn mathématiques, on appelle relation d'ordre total sur un ensemble E toute relation d'ordre ≤ pour laquelle deux éléments de E sont toujours comparables, c'est-à-dire que On dit alors que E est totalement ordonné par ≤. Une relation binaire ≤ sur un ensemble E est un ordre total si (pour tous éléments x, y et z de E) : x ≤ x (réflexivité) ; si x ≤ y et y ≤ x, alors x = y (antisymétrie) ; si x ≤ y et y ≤ z, alors x ≤ z (transitivité) ; x ≤ y ou y ≤ x (totalité). Les trois premières propriétés sont celles faisant de ≤ une relation d'ordre.
Relation réflexiveEn mathématiques, une relation binaire peut avoir, entre autres propriétés, la réflexivité ou bien l'antiréflexivité (ou irréflexivité). Une relation R sur un ensemble X est dite : réflexive si tout élément de X est R-relié à lui-même :ou encore, si le graphe de R contient la diagonale de X (qui est le graphe de l'égalité) ; antiréflexive (ou irréflexive) si aucun élément de X n'est R-relié à lui-même :ou encore, si son graphe est disjoint de la diagonale de X.
Compression artifactA compression artifact (or artefact) is a noticeable distortion of media (including , audio, and video) caused by the application of lossy compression. Lossy data compression involves discarding some of the media's data so that it becomes small enough to be stored within the desired or transmitted (streamed) within the available bandwidth (known as the data rate or bit rate). If the compressor cannot store enough data in the compressed version, the result is a loss of quality, or introduction of artifacts.
Relation ternaireEn mathématiques, une relation ternaire est une relation d'arité 3, de même que les relations binaires, plus courantes, sont d'arité 2. Formellement, une relation ternaire est donc représentée par son graphe, qui est une partie du produit X × Y × Z de trois ensembles X, Y et Z. Le graphe d'une fonction de deux variables f : X × Y → Z, c'est-à-dire l'ensemble des triplets de la forme (x, y, f(x, y)), représente la relation ternaire R définie par : R(x, y, z) si z est l' de (x, y) par f.
Ordre lexicographiqueEn mathématiques, un ordre lexicographique est un ordre que l'on définit sur les suites finies d'éléments d'un ensemble ordonné (ou, de façon équivalente, les mots construits sur un ensemble ordonné). Sa définition est une généralisation de l'ordre du dictionnaire : l'ensemble ordonné est l'alphabet, les mots sont bien des suites finies de lettres de l'alphabet. La principale propriété de l'ordre lexicographique est de conserver la totalité de l'ordre initial.
Relation inverseIn mathematics, the converse relation, or transpose, of a binary relation is the relation that occurs when the order of the elements is switched in the relation. For example, the converse of the relation 'child of' is the relation 'parent of'. In formal terms, if and are sets and is a relation from to then is the relation defined so that if and only if In set-builder notation, The notation is analogous with that for an inverse function. Although many functions do not have an inverse, every relation does have a unique converse.
Order isomorphismIn the mathematical field of order theory, an order isomorphism is a special kind of monotone function that constitutes a suitable notion of isomorphism for partially ordered sets (posets). Whenever two posets are order isomorphic, they can be considered to be "essentially the same" in the sense that either of the orders can be obtained from the other just by renaming of elements. Two strictly weaker notions that relate to order isomorphisms are order embeddings and Galois connections.
Gamme pentatoniqueLes gammes pentatoniques (du grec πέντε, penta, « cinq ») sont des échelles musicales constituées de cinq notes (= hauteurs de son) différentes. Elles peuvent être ou non basées sur le système du tempérament égal. Les gammes pentatoniques sont abondamment utilisées dans les genres de musique populaire afro-américaine tels que le blues, le jazz et le rock 'n' roll, mais on retrouve des gammes pentatoniques dans un grand nombre de cultures musicales, notamment dans les musiques traditionnelles asiatiques.
Connected relationIn mathematics, a relation on a set is called connected or complete or total if it relates (or "compares") all pairs of elements of the set in one direction or the other while it is called strongly connected if it relates pairs of elements. As described in the terminology section below, the terminology for these properties is not uniform. This notion of "total" should not be confused with that of a total relation in the sense that for all there is a so that (see serial relation).
Gamme musicalethumb|Gamme de do majeur |alt=Portée de musique montrant la clé de sol et la gamme de do majeur, composée des notes do ré mi fa sol la si do. En musique, une gamme (appelée aussi parfois « échelle ») est un ensemble de sons, appelés degrés, formant le cadre dans lequel se bâtit une œuvre musicale. Une échelle musicale est caractérisée par les intervalles conjoints qui la composent — c'est-à-dire, les intervalles entre degrés voisins —, et ce, indépendamment de toute idée de tonalité et de tonique.