Strategic thinkingStrategic thinking is a mental or thinking process applied by an individual in the context of achieving a goal or set of goals. As a cognitive activity, it produces thought. When applied in an organizational strategic management process, strategic thinking involves the generation and application of unique business insights and opportunities intended to create competitive advantage for a firm or organization. It can be done individually, as well as collaboratively among key people who can positively alter an organization's future.
Matrice jacobienneEn analyse vectorielle, la matrice jacobienne est la matrice des dérivées partielles du premier ordre d'une fonction vectorielle en un point donné. Son nom vient du mathématicien Charles Jacobi. Le déterminant de cette matrice, appelé jacobien, joue un rôle important pour l'intégration par changement de variable et dans la résolution de problèmes non linéaires. Soit F une fonction d'un ouvert de R à valeurs dans R. Une telle fonction est définie par ses m fonctions composantes à valeurs réelles : .
Stratégie d'entrepriseLa stratégie d'entreprise est l'ensemble des choix d'allocation de ressources qui définissent le périmètre d'activité d'une organisation en vue de réaliser ses objectifs. Les axes de stratégies classiques cherchent à assurer sa rentabilité, son développement, sa pérennité et le bien-être qu'elle apporte aux salariés. Elle correspond aux axes de développement choisis pour l'entreprise et se concrétise à travers un système d'objectifs et un modèle économique (ou une chaîne de valeur) piloté par un processus décisionnel complexe : la décision stratégique.
Déterminant (mathématiques)vignette|L'aire du parallélogramme est la valeur absolue du déterminant de la matrice formée par les vecteurs correspondants aux côtés du parallélogramme. En mathématiques, le déterminant est une valeur qu'on peut associer aux matrices ou aux applications linéaires en dimension finie. Sur les exemples les plus simples, ceux de la géométrie euclidienne en dimension 2 ou 3, il s'interprète en termes d'aires ou de volumes, et son signe est relié à la notion d'orientation.
Matrice hessienneEn mathématiques, la matrice hessienne (ou simplement le hessien ou la hessienne) d'une fonction numérique est la matrice carrée, notée , de ses dérivées partielles secondes. Etant donnée une fonction à valeurs réelles dont toutes les dérivées partielles secondes existent, le coefficient d'indice de la matrice hessienne vaut . Autrement dit, On appelle discriminant hessien (ou simplement hessien) le déterminant de cette matrice. Le terme « hessien » a été introduit par James Joseph Sylvester, en hommage au mathématicien allemand Ludwig Otto Hesse.
Matrice de VandermondeEn algèbre linéaire, une matrice de Vandermonde est une matrice avec une progression géométrique dans chaque ligne. Elle tient son nom du mathématicien français Alexandre-Théophile Vandermonde. De façon matricielle, elle se présente ainsi : Autrement dit, pour tous i et j, le coefficient en ligne i et colonne j est Remarque. Certains auteurs utilisent la transposée de la matrice ci-dessus. On considère une matrice V de Vandermonde carrée (). Elle est inversible si et seulement si les sont deux à deux distincts.
Gram matrixIn linear algebra, the Gram matrix (or Gramian matrix, Gramian) of a set of vectors in an inner product space is the Hermitian matrix of inner products, whose entries are given by the inner product . If the vectors are the columns of matrix then the Gram matrix is in the general case that the vector coordinates are complex numbers, which simplifies to for the case that the vector coordinates are real numbers. An important application is to compute linear independence: a set of vectors are linearly independent if and only if the Gram determinant (the determinant of the Gram matrix) is non-zero.