Tableau périodique des élémentsvignette|400px|Tableau périodique des éléments au . 400px|vignette|Avec davantage de détails par élément. Le tableau périodique des éléments, également appelé tableau ou table de Mendeleïev, classification périodique des éléments ou simplement tableau périodique, représente tous les éléments chimiques, ordonnés par numéro atomique croissant et organisés en fonction de leur configuration électronique, laquelle sous-tend leurs propriétés chimiques.
Méthode d'EulerEn mathématiques, la méthode d'Euler, nommée ainsi en l'honneur du mathématicien Leonhard Euler (1707 — 1783), est une procédure numérique pour résoudre par approximation des équations différentielles du premier ordre avec une condition initiale. C'est la plus simple des méthodes de résolution numérique des équations différentielles. thumb|Illustration de la méthode d'Euler explicite : l'avancée se fait par approximation sur la tangente au point initial.
Période du tableau périodiqueDans le tableau périodique des éléments, une période est une ligne de la table. Les éléments chimiques d'une même période ont le même nombre de couches électroniques. Sept périodes contiennent les éléments observés à ce jour, et une huitième période hypothétique a été décrite. L'organisation du tableau en lignes nommées périodes et colonnes nommées groupes reflète la périodicité des propriétés physico-chimiques des éléments lorsque le nombre atomique augmente.
Méthode itérativeEn analyse numérique, une méthode itérative est un procédé algorithmique utilisé pour résoudre un problème, par exemple la recherche d’une solution d’un système d'équations ou d’un problème d’optimisation. En débutant par le choix d’un point initial considéré comme une première ébauche de solution, la méthode procède par itérations au cours desquelles elle détermine une succession de solutions approximatives raffinées qui se rapprochent graduellement de la solution cherchée. Les points générés sont appelés des itérés.
Tableau périodique étenduredresse=1.5|vignette|Tableau périodique étendu proposé par P. Pyykkö. Un tableau périodique étendu est un tableau périodique comportant des éléments chimiques au-delà de la , éléments hypothétiques de numéro atomique supérieur à 118 (correspondant à l'oganesson) classés en fonction de leurs configurations électroniques calculées. Le premier tableau périodique étendu a été théorisé par Glenn Seaborg en 1969 : il prévoyait une contenant du bloc g et une nouvelle famille d'éléments chimiques dite des « superactinides ».
Heun's methodIn mathematics and computational science, Heun's method may refer to the improved or modified Euler's method (that is, the explicit trapezoidal rule), or a similar two-stage Runge–Kutta method. It is named after Karl Heun and is a numerical procedure for solving ordinary differential equations (ODEs) with a given initial value. Both variants can be seen as extensions of the Euler method into two-stage second-order Runge–Kutta methods.
Méthode de JacobiLa méthode de Jacobi, due au mathématicien allemand Karl Jacobi, est une méthode itérative de résolution d'un système matriciel de la forme Ax = b. Pour cela, on utilise une suite x qui converge vers un point fixe x, solution du système d'équations linéaires. On cherche à construire, pour x donné, la suite x = F(x) avec . où est une matrice inversible. où F est une fonction affine. La matrice B = MN est alors appelée matrice de Jacobi.
Méthode de GalerkineEn mathématiques, dans le domaine de l'analyse numérique, les méthodes de Galerkine sont une classe de méthodes permettant de transformer un problème continu (par exemple une équation différentielle) en un problème discret. Cette approche est attribuée aux ingénieurs russes Ivan Boubnov (1911) et Boris Galerkine (1913). Cette méthode est couramment utilisée dans la méthode des éléments finis. On part de la formulation faible du problème. La solution appartient à un espace fonctionnel satisfaisant des propriétés de régularité bien définies.