Robustesse (statistiques)En statistiques, la robustesse d'un estimateur est sa capacité à ne pas être perturbé par une modification dans une petite partie des données ou dans les paramètres du modèle choisi pour l'estimation. Ricardo A. Maronna, R. Douglas Martin et Victor J. Yohai; Robust Statistics - Theory and Methods, Wiley Series in Probability and Statistics (2006). Dagnelie P.; Statistique théorique et appliquée. Tome 2 : Inférence statistique à une et à deux dimensions, Paris et Bruxelles (2006), De Boeck et Larcier.
Maximum de vraisemblanceEn statistique, l'estimateur du maximum de vraisemblance est un estimateur statistique utilisé pour inférer les paramètres de la loi de probabilité d'un échantillon donné en recherchant les valeurs des paramètres maximisant la fonction de vraisemblance. Cette méthode a été développée par le statisticien Ronald Aylmer Fisher en 1922. Soient neuf tirages aléatoires x1, ..., x9 suivant une même loi ; les valeurs tirées sont représentées sur les diagrammes ci-dessous par des traits verticaux pointillés.
Bayes estimatorIn estimation theory and decision theory, a Bayes estimator or a Bayes action is an estimator or decision rule that minimizes the posterior expected value of a loss function (i.e., the posterior expected loss). Equivalently, it maximizes the posterior expectation of a utility function. An alternative way of formulating an estimator within Bayesian statistics is maximum a posteriori estimation. Suppose an unknown parameter is known to have a prior distribution .
Loi bêtaDans la théorie des probabilités et en statistiques, la loi bêta est une famille de lois de probabilités continues, définies sur , paramétrée par deux paramètres de forme, typiquement notés (alpha) et (bêta). C'est un cas spécial de la loi de Dirichlet, avec seulement deux paramètres. Admettant une grande variété de formes, elle permet de modéliser de nombreuses distributions à support fini. Elle est par exemple utilisée dans la méthode PERT. Fixons les deux paramètres de forme α, β > 0.
ReproductibilitéLa reproductibilité d'une expérience scientifique est une des conditions qui permettent d'inclure les observations réalisées durant cette expérience dans le processus d'amélioration perpétuelle des connaissances scientifiques. Cette condition part du principe qu'on ne peut tirer de conclusions que d'un événement bien décrit, qui est apparu plusieurs fois, provoqué par des personnes différentes. Cette condition permet de s'affranchir d'effets aléatoires venant fausser les résultats ainsi que des erreurs de jugement ou des manipulations de la part des scientifiques.
Filtre de Kalmanvignette| Concept de base du filtre de Kalman. En statistique et en théorie du contrôle, le filtre de Kalman est un filtre à réponse impulsionnelle infinie qui estime les états d'un système dynamique à partir d'une série de mesures incomplètes ou bruitées. Le filtre a été nommé d'après le mathématicien et informaticien américain d'origine hongroise Rudolf Kálmán. Le filtre de Kalman est utilisé dans une large gamme de domaines technologiques (radar, vision électronique, communication...).
Reproducibility ProjectThe Reproducibility Project: Psychology was a crowdsourced collaboration of 270 contributing authors to repeat 100 published experimental and correlational psychological studies. This project was led by the Center for Open Science and its co-founder, Brian Nosek, who started the project in November 2011. The results of this collaboration were published in August 2015. Reproducibility is the ability to produce the same findings, using the same methodologies as the original work, but on a different dataset (for instance, collected from a different set of participants).
Crise de la reproductibilitéLa crise de la reproductibilité (replication crisis ou replicability crisis ou reproducibility crisis en anglais) est la crise méthodologique dans le domaine des sciences selon laquelle de nombreux résultats publiés dans des revues scientifiques sont difficiles, voire impossibles à reproduire au cours d'études subséquentes. Initiée au milieu des années 2000, la crise prend de l'ampleur au milieu des années 2010, nourrie par la publication de plusieurs articles sur le phénomène.