Réseau de neurones artificielsUn réseau de neurones artificiels, ou réseau neuronal artificiel, est un système dont la conception est à l'origine schématiquement inspirée du fonctionnement des neurones biologiques, et qui par la suite s'est rapproché des méthodes statistiques. Les réseaux de neurones sont généralement optimisés par des méthodes d'apprentissage de type probabiliste, en particulier bayésien.
Algorithme du gradient stochastiqueL'algorithme du gradient stochastique est une méthode de descente de gradient (itérative) utilisée pour la minimisation d'une fonction objectif qui est écrite comme une somme de fonctions différentiables. À la fois l'estimation statistique et l'apprentissage automatique s'intéressent au problème de la minimisation d'une fonction objectif qui a la forme d'une somme : où le paramètre qui minimise doit être estimé. Chacune des fonctions est généralement associée avec la -ème observation de l'ensemble des données (utilisées pour l'apprentissage).
Réseaux antagonistes génératifsEn intelligence artificielle, les réseaux antagonistes génératifs (RAG) parfois aussi appelés réseaux adverses génératifs (en anglais generative adversarial networks ou GANs) sont une classe d'algorithmes d'apprentissage non supervisé. Ces algorithmes ont été introduits par . Ils permettent de générer des images avec un fort degré de réalisme. Un GAN est un modèle génératif où deux réseaux sont placés en compétition dans un scénario de théorie des jeux. Le premier réseau est le générateur, il génère un échantillon (ex.
Adversarial machine learningAdversarial machine learning is the study of the attacks on machine learning algorithms, and of the defenses against such attacks. A survey from May 2020 exposes the fact that practitioners report a dire need for better protecting machine learning systems in industrial applications. To understand, note that most machine learning techniques are mostly designed to work on specific problem sets, under the assumption that the training and test data are generated from the same statistical distribution (IID).
Réseau de neurones récurrentsUn réseau de neurones récurrents (RNN pour recurrent neural network en anglais) est un réseau de neurones artificiels présentant des connexions récurrentes. Un réseau de neurones récurrents est constitué d'unités (neurones) interconnectées interagissant non-linéairement et pour lequel il existe au moins un cycle dans la structure. Les unités sont reliées par des arcs (synapses) qui possèdent un poids. La sortie d'un neurone est une combinaison non linéaire de ses entrées.
Réseau neuronal convolutifEn apprentissage automatique, un réseau de neurones convolutifs ou réseau de neurones à convolution (en anglais CNN ou ConvNet pour convolutional neural networks) est un type de réseau de neurones artificiels acycliques (feed-forward), dans lequel le motif de connexion entre les neurones est inspiré par le cortex visuel des animaux. Les neurones de cette région du cerveau sont arrangés de sorte qu'ils correspondent à des régions qui se chevauchent lors du pavage du champ visuel.
Types of artificial neural networksThere are many types of artificial neural networks (ANN). Artificial neural networks are computational models inspired by biological neural networks, and are used to approximate functions that are generally unknown. Particularly, they are inspired by the behaviour of neurons and the electrical signals they convey between input (such as from the eyes or nerve endings in the hand), processing, and output from the brain (such as reacting to light, touch, or heat). The way neurons semantically communicate is an area of ongoing research.
Coordinate descentCoordinate descent is an optimization algorithm that successively minimizes along coordinate directions to find the minimum of a function. At each iteration, the algorithm determines a coordinate or coordinate block via a coordinate selection rule, then exactly or inexactly minimizes over the corresponding coordinate hyperplane while fixing all other coordinates or coordinate blocks. A line search along the coordinate direction can be performed at the current iterate to determine the appropriate step size.
Time delay neural networkTime delay neural network (TDNN) is a multilayer artificial neural network architecture whose purpose is to 1) classify patterns with shift-invariance, and 2) model context at each layer of the network. Shift-invariant classification means that the classifier does not require explicit segmentation prior to classification. For the classification of a temporal pattern (such as speech), the TDNN thus avoids having to determine the beginning and end points of sounds before classifying them.
Géométrie euclidienneLa géométrie euclidienne commence avec les Éléments d'Euclide, qui est à la fois une somme des connaissances géométriques de l'époque et une tentative de formalisation mathématique de ces connaissances. Les notions de droite, de plan, de longueur, d'aire y sont exposées et forment le support des cours de géométrie élémentaire. La conception de la géométrie est intimement liée à la vision de l'espace physique ambiant au sens classique du terme.