Pratique fondée sur les preuvesLa pratique fondée sur les preuves, sur les faits, ou sur des données probantes est une approche interdisciplinaire de la pratique clinique qui a gagné du terrain après son apparition au début des années 1990 par l'intermédiaire du médecin canadien Gordon Guyatt. En 1992, une publication indique : . Elle a commencé en médecine comme médecine factuelle (EBM) et se propage aux professions paramédicales de la santé, domaines éducatifs et autres.
Preuve empiriquePreuve empirique, données ou connaissance, aussi appelée expérience des sens, est un terme collectif pour désigner la connaissance ou les sources de la connaissance acquise au moyen des sens, en particulier par l'observation et l'expérimentation. Le terme vient du mot grec ancien pour expérience, ἐμπειρία (empeiría). Après Emmanuel Kant, il est habituel en philosophie d'appeler une connaissance ainsi acquise connaissance a posteriori. Cela en opposition à une connaissance a priori, connaissance accessible à partir de la pensée spéculative seule.
Médecine fondée sur les faitsLa médecine fondée sur les faits (ou médecine fondée sur les données probantes ; voir les autres synonymes) se définit comme . On utilise plus couramment le terme anglais , et parfois les termes médecine fondée sur les preuves ou médecine factuelle. Ces preuves proviennent d'études cliniques systématiques, telles que des essais contrôlés randomisés en double aveugle, des méta-analyses, éventuellement des études transversales ou de suivi bien construites.
Hypothèse nulleEn statistiques et en économétrie, l'hypothèse nulle (symbole international : ) est une hypothèse postulant l'égalité entre des paramètres statistiques (généralement, la moyenne ou la variance) de deux échantillons dont elle fait l’hypothèse qu'ils sont pris sur des populations équivalentes. Elle est toujours testée contre une hypothèse alternative qui postule soit la différence des données (test bilatéral), soit une inégalité (plus petit que ou plus grand que) entre les données (test unilatéral).
PreuveUne preuve, (en science ou en droit) est un fait ou un raisonnement propre à établir la vérité. Une preuve est associée à son niveau d'incertitude quand elle est utilisée. Les éléments inductifs et déductifs qui y sont attachés lui confèrent donc un certain niveau d'incertitude. L'évaluation intuitive de ce niveau détermine le degré de confiance qu'on peut apporter à la preuve. La plupart des preuves utilisées dans la vie courante sont communément admises comme étant dignes de confiance.
Hypothèse de Riemann généraliséeL'hypothèse de Riemann est l'une des plus importantes conjectures des mathématiques et concerne les zéros de la fonction ζ de Riemann. Divers objets géométriques et arithmétiques peuvent être décrits par ce que l'on appelle les fonctions L globales, qui sont similaires formellement à la fonction zêta de Riemann. On peut alors se poser la même question à propos des zéros de ces fonctions L, fournissant diverses généralisations de l'hypothèse de Riemann.
Test statistiqueEn statistiques, un test, ou test d'hypothèse, est une procédure de décision entre deux hypothèses. Il s'agit d'une démarche consistant à rejeter ou à ne pas rejeter une hypothèse statistique, appelée hypothèse nulle, en fonction d'un échantillon de données. Il s'agit de statistique inférentielle : à partir de calculs réalisés sur des données observées, on émet des conclusions sur la population, en leur rattachant des risques d'être erronées. Hypothèse nulle L'hypothèse nulle notée H est celle que l'on considère vraie a priori.
Hypothèse de RiemannEn mathématiques, l'hypothèse de Riemann est une conjecture formulée en 1859 par le mathématicien allemand Bernhard Riemann, selon laquelle les zéros non triviaux de la fonction zêta de Riemann ont tous une partie réelle égale à 1/2. Sa démonstration améliorerait la connaissance de la répartition des nombres premiers et ouvrirait des nouveaux domaines aux mathématiques. Cette conjecture constitue l'un des problèmes non résolus les plus importants des mathématiques du début du : elle est l'un des vingt-trois fameux problèmes de Hilbert proposés en 1900, l'un des sept problèmes du prix du millénaire et l'un des dix-huit problèmes de Smale.
Bayes estimatorIn estimation theory and decision theory, a Bayes estimator or a Bayes action is an estimator or decision rule that minimizes the posterior expected value of a loss function (i.e., the posterior expected loss). Equivalently, it maximizes the posterior expectation of a utility function. An alternative way of formulating an estimator within Bayesian statistics is maximum a posteriori estimation. Suppose an unknown parameter is known to have a prior distribution .
Empirical risk minimizationEmpirical risk minimization (ERM) is a principle in statistical learning theory which defines a family of learning algorithms and is used to give theoretical bounds on their performance. The core idea is that we cannot know exactly how well an algorithm will work in practice (the true "risk") because we don't know the true distribution of data that the algorithm will work on, but we can instead measure its performance on a known set of training data (the "empirical" risk).