L'hypothèse de Riemann est l'une des plus importantes conjectures des mathématiques et concerne les zéros de la fonction ζ de Riemann. Divers objets géométriques et arithmétiques peuvent être décrits par ce que l'on appelle les fonctions L globales, qui sont similaires formellement à la fonction zêta de Riemann. On peut alors se poser la même question à propos des zéros de ces fonctions L, fournissant diverses généralisations de l'hypothèse de Riemann. Aucune de ces conjectures n'a été confirmée ou infirmée par une démonstration, mais beaucoup de mathématiciens croient qu'elles sont vraies. Les fonctions L globales peuvent être associées aux courbes elliptiques, aux corps de nombres (dans ce cas, elles sont appelées fonctions zêta de Dedekind), aux , et aux caractères de Dirichlet (dans ce cas, elles sont appelées fonctions L de Dirichlet). Lorsque l'hypothèse de Riemann est formulée pour les fonctions zêta de Dedekind, elle est connue sous le nom d'hypothèse de Riemann étendue (HRE) et lorsqu'elle est formulée pour les fonctions L de Dirichlet, elle est connue sous le nom d'hypothèse de Riemann généralisée (HRG). L'hypothèse de Riemann généralisée a sans doute été formulée pour la première fois par en 1884. De même que l'hypothèse de Riemann originelle, elle a d'importantes conséquences sur la répartition des nombres premiers. Un caractère de Dirichlet est une fonction arithmétique complètement multiplicative χ pour laquelle il existe un entier naturel k > 0 tel que, pour tout entier n, on ait χ(n + k) = χ(n) et χ(n) = 0 si n n'est pas premier avec k. On définit la fonction L de Dirichlet d'un tel caractère par : pour tout nombre complexe s de partie réelle > 1. Par prolongement analytique, cette fonction peut être étendue à une fonction méromorphe définie sur tout le plan complexe. L'énoncé de l'hypothèse de Riemann généralisée est le suivant : Le cas du caractère trivial (χ(n) = 1 pour tout n) correspond à l'hypothèse de Riemann ordinaire. Soient a et d deux entiers naturels premiers entre eux, avec d non nul.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (9)
MATH-313: Number theory I.b - Analytic number theory
The aim of this course is to present the basic techniques of analytic number theory.
MATH-482: Number theory I.a - Algebraic number theory
Algebraic number theory is the study of the properties of solutions of polynomial equations with integral coefficients; Starting with concrete problems, we then introduce more general notions like alg
MATH-201: Analysis III
Calcul différentiel et intégral. Eléments d'analyse complexe.
Afficher plus
Séances de cours associées (38)
Intégrales multiples : extension et propriétés
Explore l'extension et les propriétés de plusieurs intégrales pour des fonctions continues sur des rectangles.
Intégrales définies : propriétés et interprétation
Couvre le calcul des points minimaux et le concept d'intégrales définies.
Riemann Integral: Construction et propriétés
Explore la construction et les propriétés de l'intégrale de Riemann, y compris les propriétés intégrales et le théorème de la valeur moyenne.
Afficher plus
Publications associées (33)
Concepts associés (13)
Hypothèse de Riemann
En mathématiques, l'hypothèse de Riemann est une conjecture formulée en 1859 par le mathématicien allemand Bernhard Riemann, selon laquelle les zéros non triviaux de la fonction zêta de Riemann ont tous une partie réelle égale à 1/2. Sa démonstration améliorerait la connaissance de la répartition des nombres premiers et ouvrirait des nouveaux domaines aux mathématiques. Cette conjecture constitue l'un des problèmes non résolus les plus importants des mathématiques du début du : elle est l'un des vingt-trois fameux problèmes de Hilbert proposés en 1900, l'un des sept problèmes du prix du millénaire et l'un des dix-huit problèmes de Smale.
Fonction L
vignette|Représentation de la fonction ζ de Riemann, exemple le plus classique de fonction L En mathématiques, la théorie des fonctions L est devenue une branche très substantielle, et encore largement conjecturelle, de la théorie analytique des nombres contemporaine. On y construit de larges généralisations de la fonction zêta de Riemann et même des séries L pour un caractère de Dirichlet et on y énonce de manière systématique leurs propriétés générales, qui dans la plupart des cas sont encore hors de portée d'une démonstration.
Test de primalité
vignette|Le 39e nombre premier de Mersenne découvert à ce jour pour un article sur la primalité Un test de primalité est un algorithme permettant de savoir si un nombre entier est premier. Le test le plus simple est celui des divisions successives : pour tester N, on vérifie s’il est divisible par l’un des entiers compris au sens large entre 2 et N-1. Si la réponse est négative, alors N est premier, sinon il est composé.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.