Théorème de KünnethEn mathématiques, le théorème de Künneth est un résultat de topologie algébrique qui décrit l'homologie singulière du produit X × Y de deux espaces topologiques, en termes de groupes homologiques singuliers Hi(X, R) et Hj(Y, R). Il tient son nom du mathématicien allemand Hermann Künneth. Si R est supposé être un corps commutatif, alors le résultat est une approximation du cas général : en effet, on n'a plus besoin d'invoquer le foncteur Tor.
CW-complexeEn topologie algébrique, un CW-complexe est un type d'espace topologique, défini par J. H. C. Whitehead pour répondre aux besoins de la théorie de l'homotopie. L'idée était de travailler sur une classe d'objets plus grande que celle des complexes simpliciaux et possédant de meilleures propriétés du point de vue de la théorie des catégories, mais présentant comme eux des propriétés combinatoires se prêtant aux calculs. Le nom CW provient du qualificatif de l'espace topologique, en anglais : closure-finite weak topology, pour « à fermeture finie » et « topologie faible ».
Revêtement (mathématiques)En mathématiques, et plus particulièrement en topologie et en topologie algébrique, un revêtement d'un espace topologique B par un espace topologique E est une application continue et surjective p : E → B telle que tout point de B appartienne à un ouvert U tel que l' de U par p soit une union disjointe d'ouverts de E, chacun homéomorphe à U par p. Il s'agit donc d'un fibré à fibres discrètes. Les revêtements jouent un rôle pour calculer le groupe fondamental et les groupes d'homotopie d'un espace.
Homologie de FloerL'homologie de Floer est une adaptation de l'homologie de Morse en dimension infinie. L'homologie de Floer symplectique (HFS) est une théorie homologique pour une variété symplectique munie d'un symplectomorphisme non-dégénéré. Si le symplectomorphisme est hamiltonien, l'homologie provient de l'étude de la fonctionnelle d'action symplectique sur le revêtement universel de l'espace des lacets de la variété symplectique. L'homologie de Floer symplectique est invariante par isotopie hamiltonienne du symplectomorphisme.
Focal subgroup theoremIn abstract algebra, the focal subgroup theorem describes the fusion of elements in a Sylow subgroup of a finite group. The focal subgroup theorem was introduced in and is the "first major application of the transfer" according to . The focal subgroup theorem relates the ideas of transfer and fusion such as described in . Various applications of these ideas include local criteria for p-nilpotence and various non-simplicity criteria focussing on showing that a finite group has a normal subgroup of index p.
Fundamental classIn mathematics, the fundamental class is a homology class [M] associated to a connected orientable compact manifold of dimension n, which corresponds to the generator of the homology group . The fundamental class can be thought of as the orientation of the top-dimensional simplices of a suitable triangulation of the manifold. When M is a connected orientable closed manifold of dimension n, the top homology group is infinite cyclic: , and an orientation is a choice of generator, a choice of isomorphism .
Domaine fondamentalGiven a topological space and a group acting on it, the images of a single point under the group action form an orbit of the action. A fundamental domain or fundamental region is a subset of the space which contains exactly one point from each of these orbits. It serves as a geometric realization for the abstract set of representatives of the orbits. There are many ways to choose a fundamental domain. Typically, a fundamental domain is required to be a connected subset with some restrictions on its boundary, for example, smooth or polyhedral.
Relative homologyIn algebraic topology, a branch of mathematics, the (singular) homology of a topological space relative to a subspace is a construction in singular homology, for pairs of spaces. The relative homology is useful and important in several ways. Intuitively, it helps determine what part of an absolute homology group comes from which subspace. Given a subspace , one may form the short exact sequence where denotes the singular chains on the space X. The boundary map on descends to and therefore induces a boundary map on the quotient.
Espace topologique irréductibleEn topologie, un espace irréductible est un espace topologique non vide qui ne peut pas se décomposer en (c'est-à-dire s'écrire comme réunion de) deux parties fermées strictement plus petites. Ce type d'espaces apparaît (et est utilisé) surtout en géométrie algébrique, où l'irréductibilité est une des propriétés topologiques basiques.
Espace localement simplement connexeEn mathématiques, un espace localement simplement connexe est un espace topologique qui admet une base d'ouverts simplement connexes. Tout espace localement simplement connexe est donc localement connexe par arcs et a fortiori localement connexe. Le cercle est localement simplement connexe mais pas simplement connexe. La boucle d'oreille hawaïenne n'est pas localement simplement connexe ni simplement connexe, puisqu'elle n'est même pas . Le cône de la boucle d'oreille hawaïenne est contractile donc simplement connexe, mais n'est pas localement simplement connexe.