Dispersion (mécanique ondulatoire)vignette|Dispersion de la lumière blanche au passage d'un dioptre. En mécanique ondulatoire, la dispersion est le phénomène affectant une onde se propageant dans un milieu dit « dispersif », c'est-à-dire dans lequel les différentes longueurs d’onde constituant l'onde ne se propagent pas à la même vitesse. On rencontre ce phénomène pour tous types d'ondes, comme la lumière, le son et les ondes mécaniques (vagues, séismes, etc.). À l'exception du vide, tous les milieux sont dispersifs à des degrés divers.
Majorant ou minorantEn mathématiques, soient (E , ≤) un ensemble ordonné et F une partie de E ; un élément x de E est : un majorant de F s'il est supérieur ou égal, par la relation binaire définie au préalable, à tous les éléments de F : ; un minorant de F s'il est inférieur ou égal, par la relation binaire définie au préalable, à tous les éléments de F :. Si F possède un majorant x alors on dit que F est une partie majorée. Si F possède un minorant x alors on dit que F est une partie minorée.
Borne supérieure et borne inférieureEn mathématiques, les notions de borne supérieure et borne inférieure d'un ensemble de nombres réels interviennent en analyse, comme cas particulier de la définition générale suivante : la borne supérieure (ou le supremum) d'une partie d'un ensemble (partiellement) ordonné est le plus petit de ses majorants. Une telle borne n'existe pas toujours, mais si elle existe alors elle est unique. Elle n'appartient pas nécessairement à la partie considérée. Dualement, la borne inférieure (ou l'infimum) d'une partie est le plus grand de ses minorants.
Propriété de la borne supérieureEn mathématiques, un ensemble ordonné est dit posséder la propriété de la borne supérieure si tous ses sous-ensembles non vides et majorés possèdent une borne supérieure. De même, un ensemble ordonné possède la propriété de la borne inférieure si tous ses sous-ensembles non vides et minorés possèdent une borne inférieure. Il s'avère que ces deux propriétés sont équivalentes. On dit aussi parfois qu'un ensemble possédant la propriété de la borne supérieure est Dedekind complet. Soit un ensemble ordonné (partiellement ou totalement).