Théorie de la stabilitéEn mathématiques, la théorie de la stabilité traite la stabilité des solutions d'équations différentielles et des trajectoires des systèmes dynamiques sous des petites perturbations des conditions initiales. L'équation de la chaleur, par exemple, est une équation aux dérivées partielles stable parce que des petites perturbations des conditions initiales conduisent à des faibles variations de la température à un temps ultérieur en raison du principe du maximum.
Ensemble de MandelbrotEn mathématiques, lensemble de Mandelbrot est une fractale définie comme l'ensemble des points c du plan complexe pour lesquels la suite de nombres complexes définie par récurrence par : est bornée. alt=Représentation de l'ensemble de Mandelbrot|vignette|L'ensemble de Mandelbrot (en noir) L'ensemble de Mandelbrot a été découvert par Gaston Julia et Pierre Fatou avant la Première Guerre mondiale. Sa définition et son nom actuel sont dus à Adrien Douady, en hommage aux représentations qu'en a réalisées Benoît Mandelbrot dans les années 1980.
DimensionLe terme dimension, du latin dimensio « action de mesurer », désigne d’abord chacune des grandeurs d’un objet : longueur, largeur et profondeur, épaisseur ou hauteur, ou encore son diamètre si c'est une pièce de révolution. L’acception a dérivé de deux façons différentes en physique et en mathématiques. En physique, la dimension qualifie une grandeur indépendamment de son unité de mesure, tandis qu’en mathématiques, la notion de dimension correspond au nombre de grandeurs nécessaires pour identifier un objet, avec des définitions spécifiques selon le type d’objet (algébrique, topologique ou combinatoire notamment).
Suite logistiqueEn mathématiques, une suite logistique est une suite réelle simple, mais dont la récurrence n'est pas linéaire. Sa relation de récurrence est Suivant la valeur du paramètre μ (dans [0; 4] pour assurer que les valeurs de x restent dans [0; 1]), elle engendre soit une suite convergente, soit une suite soumise à oscillations, soit une suite chaotique. Souvent citée comme exemple de la complexité de comportement pouvant surgir d'une relation non linéaire simple, cette suite fut popularisée par le biologiste Robert May en 1976.
Dimension de HausdorffEn mathématiques, et plus précisément en topologie, la dimension de Hausdorff d'un espace métrique (X,d) est un nombre réel positif ou nul, éventuellement l'infini. Introduite en 1918 par le mathématicien Felix Hausdorff, elle a été développée par Abram Besicovitch, c'est pourquoi elle est parfois appelée dimension de Hausdorff-Besicovitch. L'exemple le plus simple est l'espace euclidien de dimension (au sens des espaces vectoriels) égale à n (ou plus généralement un espace vectoriel réel de dimension n muni d'une distance associée à une norme) : sa dimension de Hausdorff d est aussi égale à n, dimension de l'espace vectoriel.
Onde stationnairevignette|redresse=2|Onde stationnaire résultant de la superposition d'ondes de sens inverse ; les points rouges sont les nœuds de vibration. En physique ondulatoire, une est une oscillation locale dans un milieu clos, qui ne se propage pas. On appelle les points où l'amplitude est nulle des nœuds de vibration, et ceux où l'amplitude est maximale des ventres de vibration. Dans un milieu à une dimension, comme un conducteur électrique ou un tuyau, elle est la résultante de la superposition d'ondes de même fréquence et de même amplitude mais de sens de propagation opposé .
Inductive dimensionIn the mathematical field of topology, the inductive dimension of a topological space X is either of two values, the small inductive dimension ind(X) or the large inductive dimension Ind(X). These are based on the observation that, in n-dimensional Euclidean space Rn, (n − 1)-dimensional spheres (that is, the boundaries of n-dimensional balls) have dimension n − 1. Therefore it should be possible to define the dimension of a space inductively in terms of the dimensions of the boundaries of suitable open sets.
Nombre de StrouhalLe nombre de Strouhal est un nombre sans dimension décrivant les mécanismes de circulation oscillante. Ce nombre porte le nom de Vincent Strouhal, physicien tchèque. Physiquement, il représente le rapport du temps d'advection et du temps caractéristique de l'instationnarité. Si , l'écoulement est dit quasi stationnaire. En 1878, en étudiant les notes émises par un fil tendu soumis au vent, le physicien tchèque Vincent Strouhal fut le premier à remarquer la relation entre la fréquence du son et le quotient de la vitesse du vent par le diamètre du fil.
OscillationUne oscillation est un mouvement ou une fluctuation périodique autour d'une position d'équilibre stable. Les oscillations sont soit régulières (périodiques) soit décroissantes (amorties). Elles répondent aux mêmes équations quel que soit le domaine. Une oscillation est une "variation d'une grandeur mécanique, électrique, caractérisée par un changement périodique de sens". Le cycle d'une oscillation est le temps écoulé entre deux passages successifs par la position d'équilibre.
Oscillateur de Van der PolL’oscillateur de Van der Pol est un système dynamique à temps continu à un degré de liberté. Il est décrit par une coordonnée x(t) vérifiant une équation différentielle faisant intervenir deux paramètres : une pulsation propre ω et un coefficient de non-linéarité ε. Lorsque ε = 0, cet oscillateur se réduit à un oscillateur harmonique pur. Il porte le nom de Balthasar van der Pol.