Objet initial et objet finalEn mathématiques, et plus particulièrement en théorie des catégories, un objet initial et un objet final sont des objets qui permettent de définir une propriété universelle. Donnons-nous une catégorie . Un objet de est dit initial si pour tout objet de , il existe une et une seule flèche de vers . De même, un objet est dit final (ou terminal) si pour tout objet , il existe une et une seule flèche de vers . En particulier, la seule flèche d'un objet initial (ou final) vers lui-même est l'identité.
Catégorie monoïdaleEn mathématiques, une catégorie monoïdale est une catégorie munie d'un bifoncteur qui généralise la notion de produit tensoriel de deux structures algébriques. Intuitivement, il s'agit de l'analogue, au niveau des catégories, de la notion de monoïde, c'est-à-dire que le bifoncteur joue le rôle d'une sorte de multiplication pour les objets de la catégorie. Une catégorie monoïdale est une catégorie munie : D'un bifoncteur appelé produit tensoriel. D'un objet I appartenant à appelé « objet unité ».
Théorie des catégoriesLa théorie des catégories est l'étude des structures mathématiques et de leurs relations. Ce domaine est né du constat de l'abondance de caractéristiques partagées par diverses classes liées à des structures mathématiques. Les catégories sont utilisées dans la plupart des branches mathématiques et dans certains secteurs de l'informatique théorique et en mathématiques de la physique. Elles forment une notion unificatrice.
Category (mathematics)In mathematics, a category (sometimes called an abstract category to distinguish it from a ) is a collection of "objects" that are linked by "arrows". A category has two basic properties: the ability to compose the arrows associatively and the existence of an identity arrow for each object. A simple example is the , whose objects are sets and whose arrows are functions. is a branch of mathematics that seeks to generalize all of mathematics in terms of categories, independent of what their objects and arrows represent.
Réalité virtuellevignette|250x250px|Personnel de l'U.S. Navy utilisant un simulateur de parachute. L'expression « réalité virtuelle » (ou multimédia immersif ou réalité simulée par ordinateur) renvoie typiquement à une technologie informatique qui simule la présence physique d'un utilisateur dans un environnement artificiellement généré par des logiciels. La réalité virtuelle crée un environnement avec lequel l'utilisateur peut interagir. La réalité virtuelle reproduit donc artificiellement une expérience sensorielle, qui peut inclure la vue, le toucher, l'ouïe et l'odorat (visuelle, sonore ou haptique).
Monoïde (théorie des catégories)La notion de monoïde ou d’objet monoïdal en théorie des catégories généralise la notion algébrique du même nom ainsi que plusieurs autres structures algébriques courantes. Il s'agit formellement d'un objet d'une catégorie monoïdale vérifiant certaines propriétés réminiscentes de celles du monoïde algébrique. Soit une catégorie monoïdale. Un triplet où M est un objet de la catégorie C ; est un morphisme appelé « multiplication » ; est un morphisme appelé « unité » ; est appelé monoïde lorsque les diagrammes suivants commutent : avec l'associativité, l'identité à gauche et l'identité à droite de la catégorie monoïdale.
Catégorie des petites catégoriesEn mathématiques, plus précisément en théorie des catégories, la catégorie des petites catégories, notée Cat, est la catégorie dont les objets sont les petites catégories et dont les morphismes sont les foncteurs entre petites catégories. Cat peut en fait être considérée comme une 2-catégorie, les transformations naturelles servant de 2-morphismes. L'objet initial de Cat est la catégorie vide 0, qui est la catégorie sans objets et sans morphismes. L'objet final est la catégorie finale ou catégorie triviale 1 ayant un seul objet et un seul morphisme.
RétinalLe rétinal, appelé aussi rétinaldéhyde, est l'une des trois formes de la . Le rétinal est un aldéhyde polyinsaturé capable d'absorber la lumière et qui présente une couleur orangée. Il se lie à des protéines, les opsines, et constitue la base moléculaire de la vision. En effet, le cycle de la vision est régi par la photoisomérisation du rétinal : lorsque le rétinal 11-cis absorbe un photon, il passe de l'état 11-cis à l'état tout-trans ; cette isomérisation est à l'origine d'une hyperpolarisation du photorécepteur par .
Accessible categoryThe theory of accessible categories is a part of mathematics, specifically of . It attempts to describe categories in terms of the "size" (a cardinal number) of the operations needed to generate their objects. The theory originates in the work of Grothendieck completed by 1969, and Gabriel and Ulmer (1971). It has been further developed in 1989 by Michael Makkai and Robert Paré, with motivation coming from model theory, a branch of mathematical logic. A standard text book by Adámek and Rosický appeared in 1994.
Dual objectIn , a branch of mathematics, a dual object is an analogue of a dual vector space from linear algebra for in arbitrary . It is only a partial generalization, based upon the categorical properties of duality for finite-dimensional vector spaces. An object admitting a dual is called a dualizable object. In this formalism, infinite-dimensional vector spaces are not dualizable, since the dual vector space V∗ doesn't satisfy the axioms. Often, an object is dualizable only when it satisfies some finiteness or compactness property.