Paramètre d'échellevignette|Animation de la fonction de densité d'une loi normale (forme de cloche). L'écart-type est un paramètre d'échelle. En l'augmentant, on étale la distribution. En le diminuant, on la concentre. En théorie des probabilités et en statistiques, un paramètre d'échelle est un paramètre qui régit l'aplatissement d'une famille paramétrique de lois de probabilités. Il s'agit principalement d'un facteur multiplicatif. Si une famille de densités de probabilité, dépendant du paramètre θ est de la forme où f est une densité, alors θ est bien un paramètre d'échelle.
Estimateur (statistique)En statistique, un estimateur est une fonction permettant d'estimer un moment d'une loi de probabilité (comme son espérance ou sa variance). Il peut par exemple servir à estimer certaines caractéristiques d'une population totale à partir de données obtenues sur un échantillon comme lors d'un sondage. La définition et l'utilisation de tels estimateurs constitue la statistique inférentielle. La qualité des estimateurs s'exprime par leur convergence, leur biais, leur efficacité et leur robustesse.
Génération XLa génération X désigne, selon la classification de William Strauss et Neil Howe, le groupe des Occidentaux nés entre 1965 et 1976. D'autres spécialistes la définissent par la période 1961-1981 ou 1962-1971 (compromis entre les définitions d'Olazabal, 2009 ; Hamel, 2003 et 2009 ; Allain, 2008 ; Foot, 1999 et Coupland, 1991). Cette génération est intercalée entre celle des Babyboomeurs et la génération Y. L'expression « génération X » a d’abord été utilisée en démographie, puis en sociologie et en marketing.
Génération AlphaLa génération Alpha est la cohorte démographique qui succède à la génération Z. Les chercheurs et les médias utilisent la fin (31 décembre) des années 2000 comme année de naissance initiale et le début des années 2020 comme année de naissance finale. Nommée d'après la première lettre de l'alphabet grec, la génération Alpha est la première à être née entièrement au XXIe siècle. La plupart des membres de la génération Alpha sont les enfants des milléniaux.
Cadre d'architectureUn cadre d'architecture est une spécification sur la façon d'organiser et de présenter une architecture de systèmes ou l'architecture informatique d'un organisme. Étant donné que les disciplines de l'architecture de systèmes et de l'architecture informatique sont très larges, et que la taille de ces systèmes peut être très grande, il peut en résulter des modèles très complexes. Afin de gérer cette complexité, il est avantageux de définir un cadre d'architecture par un ensemble standard de catégories de modèles (appelés “vues”) qui ont chacun un objectif spécifique.
M-estimateurvignette|M-estimateur En statistique, les M-estimateurs constituent une large classe de statistiques obtenues par la minimisation d'une fonction dépendant des données et des paramètres du modèle. Le processus du calcul d'un M-estimateur est appelé M-estimation. De nombreuses méthodes d'estimation statistiques peuvent être considérées comme des M-estimateurs. Dépendant de la fonction à minimiser lors de la M-estimation, les M-estimateurs peuvent permettre d'obtenir des estimateurs plus robustes que les méthodes plus classiques, comme la méthode des moindres carrés.
Biais (statistique)En statistique ou en épidémiologie, un biais est une démarche ou un procédé qui engendre des erreurs dans les résultats d'une étude. Formellement, le biais de l'estimateur d'un paramètre est la différence entre la valeur de l'espérance de cet estimateur (qui est une variable aléatoire) et la valeur qu'il est censé estimer (définie et fixe). biais effet-centre biais de vérification (work-up biais) biais d'autosélection, estimé à 27 % des travaux d'écologie entre 1960 et 1984 par le professeur de biologie américain Stuart H.
Maximum spacing estimationIn statistics, maximum spacing estimation (MSE or MSP), or maximum product of spacing estimation (MPS), is a method for estimating the parameters of a univariate statistical model. The method requires maximization of the geometric mean of spacings in the data, which are the differences between the values of the cumulative distribution function at neighbouring data points.
Ordonnancement dans les systèmes d'exploitationDans les systèmes d'exploitation, l’ordonnanceur est le composant du noyau du système d'exploitation choisissant l'ordre d'exécution des processus sur les processeurs d'un ordinateur. En anglais, l'ordonnanceur est appelé scheduler. Un processus a besoin de la ressource processeur pour exécuter des calculs; il l'abandonne quand se produit une interruption, etc. De nombreux anciens processeurs ne peuvent effectuer qu'un traitement à la fois.
Fonction de vraisemblancevignette|Exemple d'une fonction de vraisemblance pour le paramètre d'une Loi de Poisson En théorie des probabilités et en statistique, la fonction de vraisemblance (ou plus simplement vraisemblance) est une fonction des paramètres d'un modèle statistique calculée à partir de données observées. Les fonctions de vraisemblance jouent un rôle clé dans l'inférence statistique fréquentiste, en particulier pour les méthodes statistiques d'estimation de paramètres.