Groupe de LieEn mathématiques, un groupe de Lie est un groupe qui est aussi une variété différentielle. D'une part, un groupe est une structure algébrique munie d'une opération binaire, typiquement une multiplication et son inverse la division, ou alors une addition et son inverse la soustraction. D'autre part, une variété est un espace qui localement ressemble à un espace euclidien. Ici, on s'intéresse à un ensemble qui est à la fois un groupe et une variété : nous pouvons multiplier les éléments entre eux, calculer l'inverse d'un élément.
Trois dimensionsTrois dimensions, tridimensionnel ou 3D sont des expressions qui caractérisent l'espace qui nous entoure, tel que perçu par notre vision, en ce qui concerne la largeur, la hauteur et la profondeur. Le terme « 3D » est également (et improprement) utilisé (surtout en anglais) pour désigner la représentation en (numérique), le relief des images stéréoscopiques ou autres , et même parfois le simple effet stéréophonique, qui ne peut par construction rendre que de la 2D (il ne s'agit donc que du calcul des projections perspectives, des ombrages, des rendus de matières).
Dynkin diagramIn the mathematical field of Lie theory, a Dynkin diagram, named for Eugene Dynkin, is a type of graph with some edges doubled or tripled (drawn as a double or triple line). Dynkin diagrams arise in the classification of semisimple Lie algebras over algebraically closed fields, in the classification of Weyl groups and other finite reflection groups, and in other contexts. Various properties of the Dynkin diagram (such as whether it contains multiple edges, or its symmetries) correspond to important features of the associated Lie algebra.
Hamming weightThe Hamming weight of a string is the number of symbols that are different from the zero-symbol of the alphabet used. It is thus equivalent to the Hamming distance from the all-zero string of the same length. For the most typical case, a string of bits, this is the number of 1's in the string, or the digit sum of the binary representation of a given number and the l1 norm of a bit vector. In this binary case, it is also called the population count, popcount, sideways sum, or bit summation.
Code de GrayLe code de Gray, également appelé code Gray ou code binaire réfléchi, est un type de codage binaire permettant de ne modifier qu'un seul bit à la fois quand un nombre est augmenté d'une unité. Cette propriété est importante pour plusieurs applications. Le nom du code vient de l'ingénieur américain Frank Gray qui publia un brevet sur ce code en 1953, mais le code lui-même est plus ancien. Le code de Gray est un codage binaire, c'est-à-dire une fonction qui associe à chaque nombre une représentation binaire.
Algèbre vertexvignette|Richard Borcherds En mathématiques, une algèbre vertex est une structure algébrique qui joue un rôle important en théorie conforme des champs et dans les domaines proches en physique. Ces structures ont aussi montré leur utilité en mathématiques dans des contextes comme l'étude du groupe Monstre et la correspondance de Langlands géométrique. Les algèbres vertex ont été introduites par Richard Borcherds en 1986, motivées par les opérateurs vertex intervenant lors de l'insertion de champs, dans la théorie conforme des champs en dimension 2.
Code binairevignette| Le mot "Wikipedia" représenté en code binaire ASCII , composé de 9 octets (72 bits). Un code binaire représente un texte, des instructions de processeur ou toute autre donnée utilisant un système à deux symboles. Le système à deux symboles utilise souvent des "0" et "1" dans le système de numération binaire. Le code binaire assigne une combinaison de chiffres binaires, également appelé bits, à chaque caractère, instruction, etc.
Groupe de HeldEn mathématiques, le groupe de Held, He, est l'unique groupe sporadique d'ordre 2 · 3 · 5 · 7 · 17 = . Il peut être défini en termes de générateurs a et b et de relations : Il a été nommé ainsi en l'honneur du mathématicien . Il a été découvert par Held lors d'une recherche des groupes simples contenant un élément d'ordre 2 dont le centralisateur est isomorphe au centralisateur d'un élément d'ordre 2 du groupe de Mathieu M24. Une seconde possibilité est le groupe projectif spécial linéaire L(2).
Supersingular prime (moonshine theory)In the mathematical branch of moonshine theory, a supersingular prime is a prime number that divides the order of the Monster group M, which is the largest sporadic simple group. There are precisely fifteen supersingular prime numbers: the first eleven primes (2, 3, 5, 7, 11, 13, 17, 19, 23, 29, and 31), as well as 41, 47, 59, and 71. The non-supersingular primes are 37, 43, 53, 61, 67, and any prime number greater than or equal to 73. Supersingular primes are related to the notion of supersingular elliptic curves as follows.
Groupe de ThompsonIn the area of modern algebra known as group theory, the Thompson group Th is a sporadic simple group of order 2153105372131931 = 90745943887872000 ≈ 9. Th is one of the 26 sporadic groups and was found by and constructed by . They constructed it as the automorphism group of a certain lattice in the 248-dimensional Lie algebra of E8. It does not preserve the Lie bracket of this lattice, but does preserve the Lie bracket mod 3, so is a subgroup of the Chevalley group E8(3).