Résumé
En mathématiques, un groupe de Lie est un groupe qui est aussi une variété différentielle. D'une part, un groupe est une structure algébrique munie d'une opération binaire, typiquement une multiplication et son inverse la division, ou alors une addition et son inverse la soustraction. D'autre part, une variété est un espace qui localement ressemble à un espace euclidien. Ici, on s'intéresse à un ensemble qui est à la fois un groupe et une variété : nous pouvons multiplier les éléments entre eux, calculer l'inverse d'un élément. Si ces opérations de groupe — multiplication et inversion — sont continues, on obtient un groupe continu. Si en plus, ces opérations de groupes sont différentiables, il s'agit d'un groupe de Lie. Les groupes de Lie sont nommés ainsi en l'honneur du mathématicien norvégien Sophus Lie, qui les introduisit afin d'étudier certaines propriétés des équations différentielles. La théorie de groupes de Lie décrit la en mathématiques. En physique théorique (par exemple dans la théorie des quarks), son importance s'est affirmée au cours du . vignette|Addition de deux vecteurs dans le plan Le plan, c'est-à-dire l'espace euclidien de dimension 2 peut être considéré comme un groupe de Lie. C'est une variété (localement, l'espace ressemble à l'espace euclidien de dimension 2) et un groupe. Comme le montre la figure à droite, l'opération de groupe est l'addition de deux points (que l'on considère alors comme des vecteurs). L'inverse d'un vecteur (x, y) est le vecteur (-x, -y). Ces deux opérations sont différentiables. gauche|vignette|Le cercle unité où chaque point est repéré par un angle avec l'axe des abscisses. Un cercle, par exemple le cercle unité, est un groupe de Lie dans le sens suivant. C'est une variété : localement, le cercle ressemble à une droite, i.e. un espace euclidien de dimension 1. D'autre part, il s'agit d'un groupe. En effet, chaque point est paramétré par un angle t avec l'axe des abscisses. L'opération d'addition de deux points correspond à additionner les angles.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.