Startup neutron sourceStartup neutron source is a neutron source used for stable and reliable initiation of nuclear chain reaction in nuclear reactors, when they are loaded with fresh nuclear fuel, whose neutron flux from spontaneous fission is insufficient for a reliable startup, or after prolonged shutdown periods. Neutron sources ensure a constant minimal population of neutrons in the reactor core, sufficient for a smooth startup. Without them, the reactor could suffer fast power excursions during startup from state with too few self-generated neutrons (new core or after extended shutdown).
Réaction en chaîne (nucléaire)vignette|redresse=1.3|Schéma d'une réaction en chaîne de fission nucléaire1. Un atome d' absorbe un neutron et se divise en deux nouveaux atomes (produits de fission), relâchant trois nouveaux neutrons et de l'énergie de liaison.2. L'un des neutrons est absorbé par un atome d' et ne continue pas la réaction, un autre neutron est simplement perdu. Cependant, un neutron entre en collision avec un atome d', qui se divise et relâche deux neutrons et de l'énergie de liaison.3.
Chaîne de Markovvignette|Exemple élémentaire de chaîne de Markov, à deux états A et E. Les flèches indiquent les probabilités de transition d'un état à un autre. En mathématiques, une chaîne de Markov est un processus de Markov à temps discret, ou à temps continu et à espace d'états discret. Un processus de Markov est un processus stochastique possédant la propriété de Markov : l'information utile pour la prédiction du futur est entièrement contenue dans l'état présent du processus et n'est pas dépendante des états antérieurs (le système n'a pas de « mémoire »).
Processus stochastiqueUn processus ou processus aléatoire (voir Calcul stochastique) ou fonction aléatoire (voir Probabilité) représente une évolution, discrète ou à temps continu, d'une variable aléatoire. Celle-ci intervient dans le calcul classique des probabilités, où elle mesure chaque résultat possible (ou réalisation) d'une épreuve. Cette notion se généralise à plusieurs dimensions. Un cas particulier important, le champ aléatoire de Markov, est utilisé en analyse spatiale.
Bruit de phasedroite|vignette|250x250px| Bruit de phase mesuré par un analyseur de source de signal. L'analyseur montre la partie positive du bruit de phase. Sur cette image, on voit le bruit de phase de la porteuse principale, trois autres signaux et une "colline de bruit". droite|vignette|250x250px| Un signal faible disparaît dans le bruit de phase d'un signal plus fort Dans le traitement du signal, le bruit de phase est la représentation dans le domaine fréquentiel des fluctuations aléatoires de la phase d'une forme d'onde.
Atomeredresse=1.25|vignette|Représentation d'un atome d' avec, apparaissant rosé au centre, le noyau atomique et, en dégradé de gris tout autour, le nuage électronique. Le noyau d', agrandi à droite, est formé de deux protons et de deux neutrons. redresse=1.25|vignette|Atomes de carbone à la surface de graphite observés par microscope à effet tunnel. Un atome est la plus petite partie d'un corps simple pouvant se combiner chimiquement avec un autre. Les atomes sont les constituants élémentaires de toutes les substances solides, liquides ou gazeuses.
Intégrale de StratonovichEn calcul stochastique, l'intégrale de Stratonovich (aussi intégrale de Fisk-Stratonovich) est un type d'intégrale stochastique. Contrairement à l'intégrale d'Itô, où seul le point final gauche de l'intervalle de décomposition est nécessaire pour la construction dans l'intégrale de Stratonovich, on utilise la moyenne arithmétique des extrémités gauche et droite L'avantage de l'intégrale de Stratonovich sur l'intégrale d'Itô est que la formule d'Itô n'a que des différentiels du premier ordre.
Propriété de Markovvignette|Exemple de processus stochastique vérifiant la propriété de Markov: un mouvement Brownien (ici représenté en 3D) d'une particule dont la position à un instant t+1 ne dépend que de la position précédente à l'instant t. En probabilité, un processus stochastique vérifie la propriété de Markov si et seulement si la distribution conditionnelle de probabilité des états futurs, étant donnés les états passés et l'état présent, ne dépend en fait que de l'état présent et non pas des états passés (absence de « mémoire »).
Fraction (mathématiques)thumb|Trois quarts de gâteau, un quart ayant été retiré. En mathématiques, une fraction est un moyen d'écrire un nombre rationnel sous la forme d'un quotient de deux entiers. La fraction a/b désigne le quotient de a par b (b≠0). Dans cette fraction, a est appelé le numérateur et b le dénominateur. Une fraction représente un partage, le dénominateur représente le nombre de parts égales faites dans une unité et son numérateur représente le nombre de parts prises dans l'unité Un nombre que l'on peut représenter par des fractions de nombres entiers est appelé nombre rationnel.
Bande passanteEn électronique, la bande passante d'un système est l'intervalle de fréquences dans lequel l'affaiblissement du signal est inférieur à une valeur spécifiée. C'est une façon sommaire de caractériser la fonction de transfert d'un système, pour indiquer la gamme de fréquences qu'un système peut raisonnablement traiter. Il faut distinguer la bande passante de la largeur de bande, d'une définition plus générale et qui concerne aussi bien les systèmes que les signaux.