Amplitude de probabilitévignette|Une fonction d'onde pour un seul électron dans l'orbite atomique 5d d'un atome d'hydrogène . La forme montre les endroits où la densité de probabilité de l'électron est supérieure à une certaine valeur, celle-ci est calculée avec l'amplitude de probabilité. La teinte sur la surface colorée montre la phase complexe de la fonction d'onde. En mécanique quantique, une amplitude de probabilité est un nombre complexe utilisé pour décrire le comportement d'un système.
Pure spinorIn the domain of mathematics known as representation theory, pure spinors (or simple spinors) are spinors that are annihilated under the Clifford action by a maximal isotropic subspace of the space of vectors with respect to the scalar product determining the Clifford algebra. They were introduced by Élie Cartan in the 1930s to classify complex structures. Pure spinors were a key ingredient in the study of spin geometry and twistor theory, introduced by Roger Penrose in the 1960s.
Mécanisme de Brout-Englert-Higgs-Hagen-Guralnik-KibbleEn physique des particules le mécanisme de Brout-Englert-Higgs-Hagen-Guralnik-Kibble (BEHHGK, prononcé « Beck »), souvent abrégé (au détriment de certains auteurs) mécanisme de Brout-Englert-Higgs, voire mécanisme de Higgs, introduit indépendamment par François Englert et Robert Brout, par Peter Higgs, et par Gerald Guralnik, Carl Richard Hagen et Thomas Kibble en 1964, décrit un processus par lequel une symétrie locale de la théorie peut être brisée spontanément, en introduisant un champ scalaire de valeur
Théorie quantique des champsvignette|296x296px|Ce diagramme de Feynman représente l'annihilation d'un électron et d'un positron, qui produit un photon (représenté par une ligne ondulée bleue). Ce photon se décompose en une paire quark-antiquark, puis l'antiquark émet un gluon (représenté par la courbe verte). Ce type de diagramme permet à la fois de représenter approximativement les processus physiques mais également de calculer précisément leurs propriétés, comme la section efficace de collision.
Groupe spinorielEn mathématiques, le groupe spinoriel de degré n, noté Spin(n), est un revêtement double particulier du groupe spécial orthogonal réel SO(n,R). C’est-à-dire qu’il existe une suite exacte de groupes de Lie On peut aussi définir les groupes spinoriels d'une forme quadratique non dégénérée sur un corps commutatif. Pour n > 2, Spin(n) est simplement connexe et coïncide avec le revêtement universel de SO(n,R). En tant que groupe de Lie, Spin(n) partage sa dimension n(n–1)/2 et son algèbre de Lie avec le groupe spécial orthogonal.
Dirac spinorIn quantum field theory, the Dirac spinor is the spinor that describes all known fundamental particles that are fermions, with the possible exception of neutrinos. It appears in the plane-wave solution to the Dirac equation, and is a certain combination of two Weyl spinors, specifically, a bispinor that transforms "spinorially" under the action of the Lorentz group. Dirac spinors are important and interesting in numerous ways. Foremost, they are important as they do describe all of the known fundamental particle fermions in nature; this includes the electron and the quarks.
Structure spinorielleEn géométrie différentielle, il est possible de définir sur certaines variétés riemanniennes la notion de structure spinorielle (qui se décline en structures Spin ou Spinc), étendant ainsi les considérations algébriques sur le groupe spinoriel et les spineurs. En termes imagés, il s'agit de trouver, dans le cadre des « espaces courbes », une géométrie « cachée » à l’œuvre derrière les concepts géométriques ordinaires. On peut aussi y voir une généralisation de la notion d'orientabilité et de changement d'orientation à une forme d'« orientabilité d'ordre supérieur ».
Chromodynamique quantique sur réseauLa chromodynamique quantique sur réseau est une approche non-perturbative de la chromodynamique quantique (QCD) qui se base sur une discrétisation de l'espace-temps. C'est une théorie de jauge sur réseau formulée sur une grille ou réseau de points dans l'espace et le temps. Lorsqu'on fait tendre la taille du réseau vers l'infini et la maille du réseau vers zéro, on retrouve le continuum de la QCD. Il est difficile, voire impossible de trouver des solutions analytiques ou perturbatives de la QCD à basses énergies, de par la nature hautement non-linéaire de la force forte.
DimensionLe terme dimension, du latin dimensio « action de mesurer », désigne d’abord chacune des grandeurs d’un objet : longueur, largeur et profondeur, épaisseur ou hauteur, ou encore son diamètre si c'est une pièce de révolution. L’acception a dérivé de deux façons différentes en physique et en mathématiques. En physique, la dimension qualifie une grandeur indépendamment de son unité de mesure, tandis qu’en mathématiques, la notion de dimension correspond au nombre de grandeurs nécessaires pour identifier un objet, avec des définitions spécifiques selon le type d’objet (algébrique, topologique ou combinatoire notamment).
Histoire de la théorie quantique des champsCet article résume l'histoire de la théorie quantique des champs. La théorie quantique des champs est l'application des concepts de la physique quantique aux champs. Issue de la mécanique quantique relativiste, dont l'interprétation comme théorie décrivant une seule particule s'était avérée incohérente, la théorie quantique des champs fournit un cadre conceptuel largement utilisé en physique des particules, en physique de la matière condensée, et en physique statistique.