Intelligence artificiellevignette|redresse=0.8|Les assistants personnels intelligents sont l'une des applications concrètes de l'intelligence artificielle dans les années 2010. L'intelligence artificielle (IA) est un ensemble de théories et de techniques visant à réaliser des machines capables de simuler l'intelligence humaine. Souvent classée dans le groupe des mathématiques et des sciences cognitives, elle fait appel à la neurobiologie computationnelle (particulièrement aux réseaux neuronaux) et à la logique mathématique (partie des mathématiques et de la philosophie).
Grand modèle de langageUn grand modèle de langage, grand modèle linguistique, grand modèle de langue, modèle massif de langage ou encore modèle de langage de grande taille (LLM, pour l'anglais large language model) est un modèle de langage possédant un grand nombre de paramètres (généralement de l'ordre du milliard de poids ou plus). Ce sont des réseaux de neurones profonds entraînés sur de grandes quantités de texte non étiqueté utilisant l'apprentissage auto-supervisé ou l'apprentissage semi-supervisé.
Puce d'accélération de réseaux de neuronesUn Accélérateur d'IA pour accélérateur d'intelligence artificielle (ou NPU, Neural Processing Unit) est une catégorie de microprocesseur ou de systèmes de calculs conçu pour accélérer un réseau de neurones artificiels, accélérer des algorithmes de vision industrielle et d'apprentissage automatique pour la robotique, l'internet des objets et autres taches de calculs-intensifs ou de contrôle de capteurs. Il s'agit souvent de conceptions multicœurs et se concentrant généralement sur l'arithmétique de faible-précision, des nouvelles architectures de flux de données ou de la capacité de calcul en mémoire.
Matrix decompositionIn the mathematical discipline of linear algebra, a matrix decomposition or matrix factorization is a factorization of a matrix into a product of matrices. There are many different matrix decompositions; each finds use among a particular class of problems. In numerical analysis, different decompositions are used to implement efficient matrix algorithms. For instance, when solving a system of linear equations , the matrix A can be decomposed via the LU decomposition.
Norme matricielleEn mathématiques, une norme matricielle est un cas particulier de norme vectorielle, sur un espace de matrices. Dans ce qui suit, K désigne le corps des réels ou des complexes. Certains auteurs définissent une norme matricielle comme étant simplement une norme sur un espace vectoriel M(K) de matrices à m lignes et n colonnes à coefficients dans K. Pour d'autres, une norme matricielle est seulement définie sur une algèbre M(K) de matrices carrées et est une norme d'algèbre, c'est-à-dire qu'elle est de plus sous-multiplicative.
Mémoire mortethumb|Une PROM (1983) Originellement, l'expression mémoire morte (en anglais, Read-Only Memory : ROM) désignait une mémoire informatique non volatile dont le contenu est fixé lors de sa programmation, qui pouvait être lue plusieurs fois par l'utilisateur, mais ne pouvait plus être modifiée. Avec l'évolution des technologies, la définition du terme mémoire morte (en français) ou read only memory (en anglais) a été élargie pour inclure les mémoires non volatiles dont le contenu est fixé lors de leur fabrication, qui peuvent être lues plusieurs fois par l'utilisateur et qui ne sont pas prévues pour être modifiées.
Intel Core 2Les sont une famille de microprocesseurs x86-64 grand-public, fabriqués par Intel à partir de la microarchitecture Core et existant en versions mono (« Solo »), double (« Duo ») ou quadruple cœurs (« Quad »). Couvrant une grande variété de domaines d'utilisation (ordinateurs de bureau, portables, ultra portables, stations de travail et serveurs), ils furent produits de 2006 à 2011. Leurs successeurs furent les microprocesseurs de la famille Nehalem, utilisant une microarchitecture du même nom.
Diffusion modelIn machine learning, diffusion models, also known as diffusion probabilistic models or score-based generative models, are a class of latent variable models. They are Markov chains trained using variational inference. The goal of diffusion models is to learn the latent structure of a dataset by modeling the way in which data points diffuse through the latent space. In computer vision, this means that a neural network is trained to denoise images blurred with Gaussian noise by learning to reverse the diffusion process.
Mémoire vive dynamiqueLa mémoire vive dynamique (en anglais DRAM pour Dynamic Random Access Memory) est un type de mémoire vive compacte et peu dispendieuse. La simplicité structurelle de la DRAM — un pico-condensateur et un transistor pour un bit — permet d'obtenir une densité élevée. Son inconvénient réside dans les courants de fuite des pico-condensateurs : l'information disparaît à moins que la charge des condensateurs ne soit rafraîchie avec une période de quelques millisecondes. D'où le terme de dynamique.
Multiplicationthumb|La multiplication de 4 par 3 donne le même résultat que la multiplication de 3 par 4. La multiplication est l'une des quatre opérations de l'arithmétique élémentaire avec l'addition, la soustraction et la division. Cette opération est souvent notée avec la croix de multiplication « × », mais peut aussi être notée par d'autres symboles (par exemple le point médian « · ») ou par l'absence de symbole. Son résultat s'appelle le produit, les nombres que l'on multiplie sont les facteurs.