Roulement mécaniqueEn mécanique, un roulement est un dispositif destiné à guider un assemblage en rotation, c'est-à-dire à permettre à une pièce de tourner par rapport à une autre selon un axe de rotation défini. Le roulement est donc un palier. Par rapport aux paliers lisses, le roulement permet d'avoir une très faible résistance au pivotement tout en supportant des efforts importants. Nous pouvons en trouver dans les machines à café, les skateboards, les trottinettes, les voitures... Le premier roulement mécanique connu date du .
Palier lisseUn palier lisse assure le guidage en rotation par glissement. Il est dépourvu d'éléments interposés, contrairement au roulement, dont le guidage est assuré par un ou plusieurs éléments roulants. Le terme anglais bearing désigne les deux types donc la confusion n'est pas rare dans les documents traduits. vignette|Exemple de palier lisse. Surface d'un arbre ou dans un alésage, ou pièce intercalée entre eux, permettant un glissement relatif l'un par rapport à l'autre avec un minimum d'usure et de frottement.
Palier (mécanique)vignette|210x210px|Représentation 3D d'un palier lisse. Les paliers sont des organes utilisés en construction mécanique pour supporter et guider, en rotation, des arbres de transmission. Suivant l’usage désiré, ces paliers peuvent être : lisses, où les arbres qui reposent sur des coussinets sont soumis au frottement de glissement entre les surfaces en contact ; à roulement, où le contact s’effectue par l’intermédiaire de billes, d'aiguilles ou de rouleaux contenus dans des cages.
Condition aux limites de NeumannEn mathématiques, une condition aux limites de Neumann (nommée d'après Carl Neumann) est imposée à une équation différentielle ou à une équation aux dérivées partielles lorsque l'on spécifie les valeurs des dérivées que la solution doit vérifier sur les frontières/limites du domaine. Pour une équation différentielle, par exemple : la condition aux limites de Neumann sur l'intervalle s'exprime par : où et sont deux nombres donnés.
Condition aux limites de RobinEn mathématique, une condition aux limites de Robin (ou de troisième type) est un type de condition aux limites portant le nom du mathématicien français Victor Gustave Robin (1855-1897), qui a travaillé dans le domaine de la thermodynamique. Elle est également appelée condition aux limites de Fourier. Imposée à une équation différentielle ordinaire ou à une équation aux dérivées partielles, il s'agit d'une relation linéaire entre les valeurs de la fonction et les valeurs de la dérivée de la fonction sur le bord du domaine.
Condition aux limites de DirichletEn mathématiques, une condition aux limites de Dirichlet (nommée d’après Johann Dirichlet) est imposée à une équation différentielle ou à une équation aux dérivées partielles lorsque l'on spécifie les valeurs que la solution doit vérifier sur les frontières/limites du domaine. Pour une équation différentielle, par exemple : la condition aux limites de Dirichlet sur l'intervalle s'exprime par : où et sont deux nombres donnés.
Problème aux limitesEn analyse, un problème aux limites est constitué d'une équation différentielle (ou plus généralement aux dérivées partielles) dont on recherche une solution prenant de plus des valeurs imposées en des limites du domaine de résolution. Contrairement au problème analogue dit de Cauchy, où une ou plusieurs conditions en un même endroit sont imposées (typiquement la valeur de la solution et de ses dérivées successives en un point), auquel le théorème de Cauchy-Lipschitz apporte une réponse générale, les problèmes aux limites sont souvent des problèmes difficiles, et dont la résolution peut à chaque fois conduire à des considérations différentes.
Cauchy boundary conditionIn mathematics, a Cauchy (koʃi) boundary condition augments an ordinary differential equation or a partial differential equation with conditions that the solution must satisfy on the boundary; ideally so as to ensure that a unique solution exists. A Cauchy boundary condition specifies both the function value and normal derivative on the boundary of the domain. This corresponds to imposing both a Dirichlet and a Neumann boundary condition. It is named after the prolific 19th-century French mathematical analyst Augustin-Louis Cauchy.
Thrust bearingA thrust bearing is a particular type of rotary bearing. Like other bearings they permanently rotate between parts, but they are designed to support a predominantly axial load. Thrust bearings come in several varieties. Thrust ball bearings, composed of bearing balls supported in a ring, can be used in low thrust applications where there is little axial load. Cylindrical thrust roller bearings consist of small cylindrical rollers arranged flat with their axes pointing to the axis of the bearing.
Line graphEn théorie des graphes, le line graph L(G) d'un graphe non orienté G, est un graphe qui représente la relation d'adjacence entre les arêtes de G. Le nom line graph vient d'un article de Harary et Norman publié en 1960. La même construction avait cependant déjà été utilisée par Whitney en 1932 et Krausz en 1943. Il est également appelé graphe adjoint. Un des premiers et des plus importants théorèmes sur les line graphs est énoncé par Hassler Whitney en 1932, qui prouve qu'en dehors d'un unique cas exceptionnel, la structure de G peut être entièrement retrouvée à partir de L(G) dans le cas des graphes connexes.