Apprentissage profondL'apprentissage profond ou apprentissage en profondeur (en anglais : deep learning, deep structured learning, hierarchical learning) est un sous-domaine de l’intelligence artificielle qui utilise des réseaux neuronaux pour résoudre des tâches complexes grâce à des architectures articulées de différentes transformations non linéaires. Ces techniques ont permis des progrès importants et rapides dans les domaines de l'analyse du signal sonore ou visuel et notamment de la reconnaissance faciale, de la reconnaissance vocale, de la vision par ordinateur, du traitement automatisé du langage.
Accident de la routevignette|Accident de la route à une intersection. thumb|Nettoyage de la chaussée après un accident de voitures frontal sur l'avenue Charles-de-Gaulle à Ouagadougou. Un accident de la route (ou accident sur la voie publique : AVP, ou en France accident de la circulation) est une collision non intentionnelle, qui a lieu sur le réseau routier entre un engin roulant (notamment automobile, camion, moto, vélo) et tout autre véhicule ou personne ou animal, se déplaçant ou non, qui engendre au moins des dégâts matériels, voire des traumatismes ou le décès d'une ou plusieurs personnes impliquées.
Prévention et sécurité routièresthumb|Limites de vitesses dans différentes zones, affichant une limite « recommandée » de pour l'autoroute (Allemagne). thumb|Les véhicules connaissant une panne ou une autre urgence peuvent s'arrêter dans la bande d'arrêt d'urgence. La prévention routière, ou sécurité routière, est l'ensemble des mesures mises en place pour empêcher les usagers de la route d'être tués ou gravement blessés dans les accidents de la route (prévention des risques), ou en atténuer les conséquences (prévision).
Types of artificial neural networksThere are many types of artificial neural networks (ANN). Artificial neural networks are computational models inspired by biological neural networks, and are used to approximate functions that are generally unknown. Particularly, they are inspired by the behaviour of neurons and the electrical signals they convey between input (such as from the eyes or nerve endings in the hand), processing, and output from the brain (such as reacting to light, touch, or heat). The way neurons semantically communicate is an area of ongoing research.
Réseau neuronal convolutifEn apprentissage automatique, un réseau de neurones convolutifs ou réseau de neurones à convolution (en anglais CNN ou ConvNet pour convolutional neural networks) est un type de réseau de neurones artificiels acycliques (feed-forward), dans lequel le motif de connexion entre les neurones est inspiré par le cortex visuel des animaux. Les neurones de cette région du cerveau sont arrangés de sorte qu'ils correspondent à des régions qui se chevauchent lors du pavage du champ visuel.
Circulation routièrethumb|Bouchon routier La circulation routière est le déplacement réglementé des automobiles, d'autres véhicules ou des piétons; au sens large, sur une route, une autoroute ou tout autre type de voirie. vignette|Convention de Genève de 1949 vignette|Convention de Vienne de 1968 La circulation routière s'est développée au vingtième siècle, localement et internationalement. Pour faciliter le développement international de la circulation routière, des conventions ont été établies.
Traffic flowIn mathematics and transportation engineering, traffic flow is the study of interactions between travellers (including pedestrians, cyclists, drivers, and their vehicles) and infrastructure (including highways, signage, and traffic control devices), with the aim of understanding and developing an optimal transport network with efficient movement of traffic and minimal traffic congestion problems.
Réseau de neurones artificielsUn réseau de neurones artificiels, ou réseau neuronal artificiel, est un système dont la conception est à l'origine schématiquement inspirée du fonctionnement des neurones biologiques, et qui par la suite s'est rapproché des méthodes statistiques. Les réseaux de neurones sont généralement optimisés par des méthodes d'apprentissage de type probabiliste, en particulier bayésien.
Réseau de neurones à propagation avantUn réseau de neurones à propagation avant, en anglais feedforward neural network, est un réseau de neurones artificiels acyclique, se distinguant ainsi des réseaux de neurones récurrents. Le plus connu est le perceptron multicouche qui est une extension du premier réseau de neurones artificiel, le perceptron inventé en 1957 par Frank Rosenblatt. vignette|Réseau de neurones à propagation avant Le réseau de neurones à propagation avant est le premier type de réseau neuronal artificiel conçu. C'est aussi le plus simple.
Système de transport intelligentLes systèmes de transport intelligents (STI) (en anglais : intelligent transportation systems - ITS) sont les applications des nouvelles technologies de l'information et de la communication au domaine des transports et de sa logistique. On les dit « intelligents » parce que leur développement repose sur des fonctions généralement associées à l'intelligence : capacités sensorielles et de choix, mémoire, communication, traitement de l'information et comportement adaptatif.