Nombre complexeEn mathématiques, l'ensemble des nombres complexes est actuellement défini comme une extension de l'ensemble des nombres réels, contenant en particulier un nombre imaginaire noté i tel que i = −1. Le carré de (−i) est aussi égal à −1 : (−i) = −1. Tout nombre complexe peut s'écrire sous la forme x + i y où x et y sont des nombres réels. Les nombres complexes ont été progressivement introduit au par l’école mathématique italienne (Jérôme Cardan, Raphaël Bombelli, Tartaglia) afin d'exprimer les solutions des équations du troisième degré en toute généralité par les formules de Cardan, en utilisant notamment des « nombres » de carré négatif.
Plan complexeEn mathématiques, le plan complexe (aussi appelé plan d'Argand, plan d'Argand-Cauchy ou plan d'Argand-Gauss) désigne un plan, muni d'un repère orthonormé, dont chaque point est la représentation graphique d'un nombre complexe unique. Le nombre complexe associé à un point est appelé l'affixe de ce point. Une affixe est constituée d'une partie réelle et d'une partie imaginaire correspondant respectivement à l'abscisse et l'ordonnée du point. On associe en général le plan complexe à un repère orthonormé direct.
Essential singularityIn complex analysis, an essential singularity of a function is a "severe" singularity near which the function exhibits odd behavior. The category essential singularity is a "left-over" or default group of isolated singularities that are especially unmanageable: by definition they fit into neither of the other two categories of singularity that may be dealt with in some manner – removable singularities and poles. In practice some include non-isolated singularities too; those do not have a residue.
Singularité (mathématiques)En mathématiques, une singularité est en général un point, une valeur ou un cas dans lequel un certain objet mathématique n'est pas bien défini ou bien subit une transition. Ce terme peut donc avoir des significations très différentes en fonction du contexte. Par exemple, dans l'analyse élémentaire, on dit que . En théorie des singularités, le terme prend un sens différent. On dit, par exemple, En algèbre linéaire, une matrice carrée est dite singulière si elle n'est pas inversible.
Nombre imaginaire purvignette|Plan des nombres complexes avec les imaginaires purs en bas à droite. thumb|Plan des nombres complexes. Les coordonnées du point A décrivent un nombre réel pur, celles du point B décrivent un nombre imaginaire pur, et celles du point C décrivent un nombre complexe. Un nombre imaginaire pur est un nombre complexe qui s'écrit sous la forme ia avec a réel, i étant l'unité imaginaire. Par exemple, i et −3i sont des imaginaires purs. Ce sont les nombres complexes dont la partie réelle est nulle.
Unité imaginaireEn mathématiques, l’unité imaginaire est un nombre complexe, noté (parfois en physique afin de ne pas le confondre avec la notation de l'intensité électrique), dont le carré vaut –1. Ses multiples par des nombres réels constituent les nombres imaginaires purs. L'appellation d'« imaginaire » est due à René Descartes et celle d'« unité imaginaire » à Carl Friedrich Gauss. Sans avoir disparu, cette appellation n'est pas d'un usage très généralisé chez les mathématiciens, qui se contentent souvent de parler du nombre i.
Removable singularityIn complex analysis, a removable singularity of a holomorphic function is a point at which the function is undefined, but it is possible to redefine the function at that point in such a way that the resulting function is regular in a neighbourhood of that point. For instance, the (unnormalized) sinc function, as defined by has a singularity at z = 0. This singularity can be removed by defining which is the limit of sinc as z tends to 0. The resulting function is holomorphic.
Théorie des singularitésvignette|droite|Visualisation de la fonction (x, y) → x2 + y2 Dans l'acception que lui a donnée René Thom, la théorie des singularités consiste à étudier des objets et des familles d'objets suivant leur degré de généricité. Dans une famille, l'objet peut subir des changements d'états ce que l'on appelle une bifurcation. Un exemple simple est donné par les courbes de niveau de la fonction : La courbe de niveau pour une valeur positive est un cercle. La valeur 0 est singulière et pour les valeurs négatives, la courbe est vide.
Singularité isoléevignette|Tracé tridimensionnel de la valeur absolue de la fonction gamma complexe En analyse complexe, une singularité isolée (appelée aussi point singulier isolé) d'une fonction holomorphe f est un point a du plan complexe, tel qu'il existe un voisinage ouvert U de a tel que f soit holomorphe sur U \ {a}. L'étude des singularités isolées d'une fonction holomorphe est fondamentale dans le calcul des résidus, notamment pour le théorème des résidus.
Puissance apparente rayonnéevignette|rhj'"ut La puissance apparente rayonnée (PAR) est une mesure théorique standardisée de l'énergie des ondes radioélectriques émises par une antenne exprimée en watts ou en dBm P(dBm)= 10*log(P(mW)). Elle résulte de la puissance émise par l'amplificateur de l’antenne corrigée des gains et les pertes du système de transmission. La PAR prend en compte la puissance de sortie de l'émetteur, les pertes dues aux lignes, connecteurs et le gain de l'antenne.