Théorie de la perturbation (mécanique quantique)En mécanique quantique, la théorie de la perturbation, ou théorie des perturbations, est un ensemble de schémas d'approximations liée à une perturbation mathématique utilisée pour décrire un système quantique complexe de façon simplifiée. L'idée est de partir d'un système simple et d'appliquer graduellement un hamiltonien « perturbant » qui représente un écart léger par rapport à l'équilibre du système (perturbation).
Modèle de Hubbardvignette|Modèle de Hubbard à deux dimensions. Le modèle de Hubbard est un modèle étudié en théorie de la matière condensée. Il décrit des fermions (généralement des électrons) sur un réseau (en général les atomes qui forment un solide), qui interagissent uniquement lorsqu'ils se trouvent sur le même site (c'est-à-dire sur le même atome). Ce modèle a été introduit en 1963 à peu près simultanément par , Martin C. Gutzwiller et Junjiro Kanamori. Il est parfois appelé modèle de Hubbard-Gutzwiller-Kanamori pour cette raison.
Théorie de la fonctionnelle de la densitéLa théorie de la fonctionnelle de la densité (DFT, sigle pour Density Functional Theory) est une méthode de calcul quantique permettant l'étude de la structure électronique, en principe de manière exacte. Au début du , il s'agit de l'une des méthodes les plus utilisées dans les calculs quantiques aussi bien en physique de la matière condensée qu'en chimie quantique en raison de son application possible à des systèmes de tailles très variées, allant de quelques atomes à plusieurs centaines.
Racine carréeEn mathématiques élémentaires, la racine carrée d'un nombre réel positif x est l'unique réel positif qui, lorsqu'il est multiplié par lui-même, donne x, c'est-à-dire le nombre positif dont le carré vaut x. On le note ou x. Dans cette expression, x est appelé le radicande et le signe est appelé le radical. La fonction qui, à tout réel positif, associe sa racine carrée s'appelle la fonction racine carrée. En algèbre et analyse, dans un anneau ou un corps A, on appelle racine carrée de a, tout élément de A dont le carré vaut a.
Théorie des bandesredresse=1.5|vignette|Représentation schématique des bandes d'énergie d'un solide. représente le niveau de Fermi. thumb|upright=1.5|Animation sur le point de vue quantique sur les métaux et isolants liée à la théorie des bandes En physique de l'état solide, la théorie des bandes est une modélisation des valeurs d'énergie que peuvent prendre les électrons d'un solide à l'intérieur de celui-ci. De façon générale, ces électrons n'ont la possibilité de prendre que des valeurs d'énergie comprises dans certains intervalles, lesquels sont séparés par des bandes d'énergie interdites (ou bandes interdites).
Théorie du champ moyen dynamiqueLa théorie du champ moyen dynamique (DMFT) est une méthode utilisée pour déterminer la structure électronique de systèmes fortement corrélés. Dans ces systèmes, les fortes corrélations électron-électron rendent impossible le traitement de chaque électron comme une particule indépendante agissant dans un potentiel effectif, comme c'est usuellement le cas dans des calculs de structure de bandes conventionnels comme en théorie de la fonctionnelle de la densité.
Extraction de racine carréeEn algorithmique et en analyse numérique, l'extraction de racine carrée est le processus qui consiste, étant donné un nombre, à en calculer la racine carrée. Il existe de nombreuses méthodes pour effectuer ce calcul. C'est un cas particulier de la recherche de calcul de la racine n-ième. La racine carrée d'un nombre pouvant être un nombre irrationnel, l'extraction de racine carrée est en général approchée. L'extraction de la racine carrée d'un nombre a est identique à la résolution de l'équation x - a = 0.
Racine carrée de deuxLa racine carrée de deux, notée (ou parfois 2), est définie comme le seul nombre réel positif qui, lorsqu’il est multiplié par lui-même, donne le nombre 2, autrement dit × = 2. C’est un nombre irrationnel, dont une valeur approchée à 10 près est : ≈ 1,414 213 562. vignette|L’hypoténuse d’un triangle rectangle isocèle de côté 1 vaut . Le calcul d’une valeur approchée de a été un problème mathématique pendant des siècles. Ces recherches ont permis de perfectionner les algorithmes de calculs d’extraction de racines carrées.
Racine carrée d'une matriceEn mathématiques, la notion de racine carrée d'une matrice particularise aux anneaux de matrices carrées la notion générale de racine carrée dans un anneau. Soient un entier naturel n non nul et M une matrice carrée d'ordre n à coefficients dans un anneau A. Un élément R de M(A) est une racine carrée de M si R = M. Une matrice donnée peut n'admettre aucune racine carrée, comme un nombre fini voire infini de racine carrées. Dans M(R) : est une racine carrée de les (pour tout réel x) sont des racines carrées de n'a pas de racine carrée R, car cela imposerait (mais elle en a dans M(C)).
Bijection réciproqueEn mathématiques, la bijection réciproque (ou fonction réciproque ou réciproque) d'une bijection est l'application qui associe à chaque élément de l'ensemble d'arrivée son unique antécédent par . Elle se note . On considère l'application de vers définie par . Pour chaque réel y, il y a un et un seul réel x tel que , ainsi pour = 8, le seul convenable est 2, en revanche, pour = –27 c'est –3. En termes mathématiques, on dit que est l'unique antécédent de et que est une bijection.