Corrélation (statistiques)En probabilités et en statistique, la corrélation entre plusieurs variables aléatoires ou statistiques est une notion de liaison qui contredit leur indépendance. Cette corrélation est très souvent réduite à la corrélation linéaire entre variables quantitatives, c’est-à-dire l’ajustement d’une variable par rapport à l’autre par une relation affine obtenue par régression linéaire. Pour cela, on calcule un coefficient de corrélation linéaire, quotient de leur covariance par le produit de leurs écarts types.
ApproximationUne approximation est une représentation imprécise ayant toutefois un lien étroit avec la quantité ou l’objet qu’elle reflète : approximation d’un nombre (de π par 3,14, de la vitesse instantanée d’un véhicule par sa vitesse moyenne entre deux points), d’une fonction mathématique, d’une solution d’un problème d’optimisation, d’une forme géométrique, d’une loi physique. Lorsqu’une partie de l’information nécessaire fait défaut, une approximation peut se substituer à une représentation exacte.
Pearson correlation coefficientIn statistics, the Pearson correlation coefficient (PCC) is a correlation coefficient that measures linear correlation between two sets of data. It is the ratio between the covariance of two variables and the product of their standard deviations; thus, it is essentially a normalized measurement of the covariance, such that the result always has a value between −1 and 1. As with covariance itself, the measure can only reflect a linear correlation of variables, and ignores many other types of relationships or correlations.
Espace vectorielvignette|Dans un espace vectoriel, on peut additionner deux vecteurs. Par exemple, la somme du vecteur v (en bleu) et w (en rouge) est v + w. On peut aussi multiplier un vecteur, comme le vecteur w que l'on peut multiplier par 2, on obtient alors 2w et la somme devient v + 2w. En mathématiques, plus précisément en algèbre linéaire, un espace vectoriel est un ensemble d'objets, appelés vecteurs, que l'on peut additionner entre eux, et que l'on peut multiplier par un scalaire (pour les étirer ou les rétrécir, les tourner, etc.
Antenne dipolaireL'antenne dipolaire, élaborée par Heinrich Rudolph Hertz vers 1886, est une antenne constituée de deux brins métalliques, alimentée en son milieu et destinée à transmettre ou recevoir de l'énergie électromagnétique. Ce type d'antenne est le plus simple à étudier d'un point de vue analytique. 220px|thumb|Antenne dipolaire. thumb|300px|Une antenne dipolaire recevant une onde radio. thumb|Schéma géométrique d'un dipôle élémentaire.
Application linéaireEn mathématiques, une application linéaire (aussi appelée opérateur linéaire ou transformation linéaire) est une application entre deux espaces vectoriels qui respecte l'addition des vecteurs et la multiplication scalaire, et préserve ainsi plus généralement les combinaisons linéaires. L’expression peut s’utiliser aussi pour un morphisme entre deux modules sur un anneau, avec une présentation semblable en dehors des notions de base et de dimension. Cette notion étend celle de fonction linéaire en analyse réelle à des espaces vectoriels plus généraux.
Antenne radioélectriquethumb|Antenne rideau HF de télécommunication. thumb|Antennes de réception de la télévision. thumb|Montage d'une antenne de station terrienne au Nicaragua. thumb|upright=1.8|Un diagramme animé d'une antenne dipôle recevant une onde radio. En radioélectricité, une antenne est un dispositif permettant de rayonner (émetteur) ou de capter (récepteur) les ondes électromagnétiques. L'antenne est un élément fondamental dans un système radioélectrique, et ses caractéristiques de rendement, gain, diagramme de rayonnement influencent directement les performances de qualité et de portée du système.
Kernel (linear algebra)In mathematics, the kernel of a linear map, also known as the null space or nullspace, is the linear subspace of the domain of the map which is mapped to the zero vector. That is, given a linear map L : V → W between two vector spaces V and W, the kernel of L is the vector space of all elements v of V such that L(v) = 0, where 0 denotes the zero vector in W, or more symbolically: The kernel of L is a linear subspace of the domain V.
Intégrale impropreEn mathématiques, lintégrale impropre (ou intégrale généralisée) désigne une extension de l'intégrale usuelle, définie par une forme de passage à la limite dans des intégrales. On note en général les intégrales impropres sans les distinguer des véritables intégrales ou intégrales définies, ainsi : est un exemple classique d'intégrale impropre convergente, mais qui n'est pas définie au sens des théories de l'intégration usuelles (que ce soit l'intégration des fonctions continues par morceaux, l'intégrale de Riemann ou celle de Lebesgue ; une exception notable est la théorie de l'intégration de Kurzweil-Henstock).
Antenne Yagithumb|Antennes Yagi thumb|Groupe de 8 antennes Yagi pour la bande EME L'antenne Yagi ou antenne Yagi-Uda (du nom de ses inventeurs, Hidetsugu Yagi et Shintaro Uda) est une antenne à éléments parasites utilisable des HF aux UHF. Mécaniquement simple à réaliser, elle est très utilisée en télévision terrestre, en liaisons point à point et par les radioamateurs. Elle fut inventée peu après la Première Guerre mondiale et utilisée pour les premiers radars. Elle est souvent appelée antenne râteau car les anciens modèles ressemblaient à un râteau.