Réseau neuronal convolutifEn apprentissage automatique, un réseau de neurones convolutifs ou réseau de neurones à convolution (en anglais CNN ou ConvNet pour convolutional neural networks) est un type de réseau de neurones artificiels acycliques (feed-forward), dans lequel le motif de connexion entre les neurones est inspiré par le cortex visuel des animaux. Les neurones de cette région du cerveau sont arrangés de sorte qu'ils correspondent à des régions qui se chevauchent lors du pavage du champ visuel.
Auto-encodeur variationnelEn apprentissage automatique, un auto-encodeur variationnel (ou VAE de l'anglais variational auto encoder), est une architecture de réseau de neurones artificiels introduite en 2013 par D. Kingma et M. Welling, appartenant aux familles des modèles graphiques probabilistes et des méthodes bayésiennes variationnelles. Les VAE sont souvent rapprochés des autoencodeurs en raison de leur architectures similaires. Leur utilisation et leur formulation mathématiques sont cependant différentes.
Limite (mathématiques)En analyse mathématique, la notion de limite décrit l’approximation des valeurs d'une suite lorsque l'indice tend vers l’infini, ou d'une fonction lorsque la variable se rapproche d’un point (éventuellement infini) au bord du domaine de définition. Si une telle limite existe dans l’ensemble d’arrivée, on dit que la suite ou la fonction est convergente (au point étudié). Si ce n’est pas le cas, elle est divergente, comme dans le cas de suites et fonctions périodiques non constantes (telle la fonction sinus en +∞).
Méthode de JacobiLa méthode de Jacobi, due au mathématicien allemand Karl Jacobi, est une méthode itérative de résolution d'un système matriciel de la forme Ax = b. Pour cela, on utilise une suite x qui converge vers un point fixe x, solution du système d'équations linéaires. On cherche à construire, pour x donné, la suite x = F(x) avec . où est une matrice inversible. où F est une fonction affine. La matrice B = MN est alors appelée matrice de Jacobi.
Fonction bornéedroite|vignette| Schéma d'une fonction bornée (rouge) et d'une fonction non bornée (bleu). Intuitivement, le graphe d'une fonction bornée reste dans une bande horizontale, contrairement au graphe d'une fonction non bornée. En mathématiques, une fonction est dite bornée si est borné. Pour une fonction f définie sur un ensemble X et à valeurs réelles ou complexes, cela revient à dire qu'il existe un nombre réel M tel que pour tout x dans X, Une fonction à valeurs réelles est dite majorée ( minorée) si l'ensemble de ses valeurs possède un majorant ( minorant) réel.
Vitesse de convergence des suitesEn analyse numérique — une branche des mathématiques — on peut classer les suites convergentes en fonction de leur vitesse de convergence vers leur point limite. C'est une manière d'apprécier l'efficacité des algorithmes qui les génèrent. Les suites considérées ici sont convergentes sans être stationnaires (tous leurs termes sont même supposés différents du point limite). Si une suite est stationnaire, tous ses éléments sont égaux à partir d'un certain rang et il est alors normal de s'intéresser au nombre d'éléments différents du point limite.
Méthode de GalerkineEn mathématiques, dans le domaine de l'analyse numérique, les méthodes de Galerkine sont une classe de méthodes permettant de transformer un problème continu (par exemple une équation différentielle) en un problème discret. Cette approche est attribuée aux ingénieurs russes Ivan Boubnov (1911) et Boris Galerkine (1913). Cette méthode est couramment utilisée dans la méthode des éléments finis. On part de la formulation faible du problème. La solution appartient à un espace fonctionnel satisfaisant des propriétés de régularité bien définies.
Méthodes de Runge-KuttaLes méthodes de Runge-Kutta sont des méthodes d'analyse numérique d'approximation de solutions d'équations différentielles. Elles ont été nommées ainsi en l'honneur des mathématiciens Carl Runge et Martin Wilhelm Kutta, lesquels élaborèrent la méthode en 1901. Ces méthodes reposent sur le principe de l'itération, c'est-à-dire qu'une première estimation de la solution est utilisée pour calculer une seconde estimation, plus précise, et ainsi de suite. Considérons le problème suivant : que l'on va chercher à résoudre en un ensemble discret t < t < .
Rayon de convergenceLe rayon de convergence d'une série entière est le nombre réel positif ou +∞ égal à la borne supérieure de l'ensemble des modules des nombres complexes où la série converge (au sens classique de la convergence simple): Si R est le rayon de convergence d'une série entière, alors la série est absolument convergente sur le disque ouvert D(0, R) de centre 0 et de rayon R. Ce disque est appelé disque de convergence. Cette convergence absolue entraine ce qui est parfois qualifié de convergence inconditionnelle : la valeur de la somme en tout point de ce disque ne dépend pas de l'ordre des termes.
Apprentissage non superviséDans le domaine informatique et de l'intelligence artificielle, l'apprentissage non supervisé désigne la situation d'apprentissage automatique où les données ne sont pas étiquetées (par exemple étiquetées comme « balle » ou « poisson »). Il s'agit donc de découvrir les structures sous-jacentes à ces données non étiquetées. Puisque les données ne sont pas étiquetées, il est impossible à l'algorithme de calculer de façon certaine un score de réussite.