Série entièreEn mathématiques et particulièrement en analyse, une série entière est une série de fonctions de la forme où les coefficients a forment une suite réelle ou complexe. Une explication de ce terme est qu'. Les séries entières possèdent des propriétés de convergence remarquables, qui s'expriment pour la plupart à l'aide de son rayon de convergence R, grandeur associée à la série. Sur le disque de convergence (disque ouvert de centre 0 et de rayon R), la fonction somme de la série peut être dérivée indéfiniment terme à terme.
Série de Taylorthumb|Brook Taylor, dont la série porte le nom. En mathématiques, et plus précisément en analyse, la série de Taylor au point d'une fonction (réelle ou complexe) indéfiniment dérivable en ce point, appelée aussi le développement en série de Taylor de en , est une série entière approchant la fonction autour de , construite à partir de et de ses dérivées successives en . Elles portent le nom de Brook Taylor, qui les a introduites en 1715.
Madhava seriesIn mathematics, a Madhava series is one of the three Taylor series expansions for the sine, cosine, and arctangent functions discovered in 14th or 15th century Kerala by the mathematician and astronomer Madhava of Sangamagrama (c. 1350 – c. 1425) or his followers in the Kerala school of astronomy and mathematics. Using modern notation, these series are: All three series were later independently discovered in 17th century Europe.
Série (mathématiques)En mathématiques, la notion de série permet de généraliser la notion de somme finie. Étant donné une suite de terme général u, étudier la série de terme général u c'est étudier la suite obtenue en prenant la somme des premiers termes de la suite (u), autrement dit la suite de terme général S défini par : L'étude d'une série peut passer par la recherche d'une écriture simplifiée des sommes finies en jeu et par la recherche éventuelle d'une limite finie quand n tend vers l'infini.
Constante de PlanckEn physique, la constante de Planck, notée , également connue sous le nom de « quantum d'action » depuis son introduction dans la théorie des quanta, est une constante physique qui a la même dimension qu'une énergie multipliée par une durée. Nommée d'après le physicien Max Planck, elle joue un rôle central en mécanique quantique car elle est le coefficient de proportionnalité fondamental qui relie l'énergie d'un photon à sa fréquence () et sa quantité de mouvement à son nombre d'onde () ou, plus généralement, les propriétés discrètes de type corpusculaires aux propriétés continues de type ondulatoire.
Constante universelle des gaz parfaitsLa constante universelle des gaz parfaits (notée , ou ) est le produit du nombre d'Avogadro () et de la constante de Boltzmann (). Ce produit vaut exactement . La constante universelle des gaz parfaits a été empiriquement déterminée en tant que constante de proportionnalité de l'équation des gaz parfaits. Elle établit le lien entre les variables d'état que sont la température, la quantité de matière, la pression et le volume. Elle est également utilisée dans de nombreuses autres applications et formules.
Constante physiquevignette|Dépendances des constantes définissant les unités du SI depuis 2019. Ici, a → b signifie que a est utilisé pour définir b. En science, une constante physique est une quantité physique dont la valeur numérique est fixe. Contrairement à une constante mathématique, elle implique directement une grandeur physiquement mesurable. Les valeurs listées ci-dessous sont des valeurs dont on a remarqué qu'elles semblaient constantes et indépendantes de tous paramètres utilisés, et que la théorie suppose donc réellement constantes.
Architecturevignette|upright=1.2|La cathédrale Saint-Pierre de Beauvais, , toute en pierre de taille, est l’exemple le plus aérien et dématérialisé de l'architecture gothique qui atteint là ses limites techniques. vignette|upright=1.2|La coupole du Panthéon, construit dans l'Antiquité romaine au début du , est restée de loin la plus large coupole du monde durant de nombreux siècles. Elle ne sera égalée qu'au par le dôme de la cathédrale de Florence qui marque de ce fait le début de la Renaissance, pour n'être dépassée qu'à partir du par les dômes contemporains.
Étoile variableEn astronomie, une étoile variable ou, par ellipse, une variable est une étoile dont l'éclat varie au cours de périodes plus ou moins longues (on parle à ce titre de variabilité stellaire). Alors que la plupart des étoiles sont de luminosité presque constante, comme le Soleil qui ne possède pratiquement pas de variation mesurable (environ 0,1 % sur un cycle de 11 ans), la luminosité de certaines étoiles varie de façon perceptible pendant des périodes de temps beaucoup plus courtes.
Mathematical constantA mathematical constant is a key number whose value is fixed by an unambiguous definition, often referred to by a special symbol (e.g., an alphabet letter), or by mathematicians' names to facilitate using it across multiple mathematical problems. Constants arise in many areas of mathematics, with constants such as e and pi occurring in such diverse contexts as geometry, number theory, statistics, and calculus. Some constants arise naturally by a fundamental principle or intrinsic property, such as the ratio between the circumference and diameter of a circle (pi).