Simulation militairevignette|Les soldats de la Grande-Bretagne de l'Artillerie Royale du train dans un monde virtuel au cours de l'Exercice Steel Sabre, 2015 Les simulations militaires, également appelées les jeux de guerre, sont des simulations dans lesquelles les théories de la guerre peuvent être testées et perfectionnées. Les simulations existent dans de nombreuses formes, avec des différents degrés de réalisme. Ces derniers temps, le champ d'application de simulations a élargi pour inclure non seulement le domaine militaire mais aussi les facteurs politiques et sociaux.
Simulation de phénomènesLa simulation de phénomènes est un outil utilisé dans le domaine de la recherche et du développement. Elle permet d'étudier les réactions d'un système à différentes contraintes pour en déduire les résultats recherchés en se passant d'expérimentation. Les systèmes technologiques (infrastructures, véhicules, réseaux de communication, de transport ou d'énergie) sont soumis à différentes contraintes et actions. Le moyen le plus simple d'étudier leurs réactions serait d'expérimenter, c'est-à-dire d'exercer l'action souhaitée sur l'élément en cause pour observer ou mesurer le résultat.
Business simulationBusiness simulation or corporate simulation is simulation used for business training, education or analysis. It can be scenario-based or numeric-based. Most business simulations are used for business acumen training and development. Learning objectives include: strategic thinking, decision making, problem solving, financial analysis, market analysis, operations, teamwork and leadership. The business gaming community seems lately to have adopted the term business simulation game instead of just gaming or just simulation.
Apprentissage ensemblisteIn statistics and machine learning, ensemble methods use multiple learning algorithms to obtain better predictive performance than could be obtained from any of the constituent learning algorithms alone. Unlike a statistical ensemble in statistical mechanics, which is usually infinite, a machine learning ensemble consists of only a concrete finite set of alternative models, but typically allows for much more flexible structure to exist among those alternatives.
Performances (informatique)En informatique, les performances énoncent les indications chiffrées mesurant les possibilités maximales ou optimales d'un matériel, d'un logiciel, d'un système ou d'un procédé technique pour exécuter une tâche donnée. Selon le contexte, les performances incluent les mesures suivantes : Un faible temps de réponse pour effectuer une tâche donnée Un débit élevé (vitesse d'exécution d'une tâche) L'efficience : faible utilisation des ressources informatiques : processeur, mémoire, stockage, réseau, consommation électrique, etc.
Apprentissage de représentationsEn apprentissage automatique, l'apprentissage des caractéristiques ou apprentissage des représentations est un ensemble de techniques qui permet à un système de découvrir automatiquement les représentations nécessaires à la détection ou à la classification des caractéristiques à partir de données brutes. Cela remplace l'ingénierie manuelle des fonctionnalités et permet à une machine d'apprendre les fonctionnalités et de les utiliser pour effectuer une tâche spécifique.
Détection de contoursEn et en vision par ordinateur, on appelle détection de contours les procédés permettant de repérer les points d'une qui correspondent à un changement brutal de l'intensité lumineuse. Ces changements de propriétés de l' indiquent en général des éléments importants de structure dans l'objet représenté. Ces éléments incluent des discontinuités dans la profondeur, dans l'orientation d'une surface, dans les propriétés d'un matériau et dans l'éclairage d'une scène.
Learning to rankLearning to rank or machine-learned ranking (MLR) is the application of machine learning, typically supervised, semi-supervised or reinforcement learning, in the construction of ranking models for information retrieval systems. Training data consists of lists of items with some partial order specified between items in each list. This order is typically induced by giving a numerical or ordinal score or a binary judgment (e.g. "relevant" or "not relevant") for each item.
Stochastic simulationA stochastic simulation is a simulation of a system that has variables that can change stochastically (randomly) with individual probabilities. Realizations of these random variables are generated and inserted into a model of the system. Outputs of the model are recorded, and then the process is repeated with a new set of random values. These steps are repeated until a sufficient amount of data is gathered. In the end, the distribution of the outputs shows the most probable estimates as well as a frame of expectations regarding what ranges of values the variables are more or less likely to fall in.
Arbre de décision (apprentissage)L’apprentissage par arbre de décision désigne une méthode basée sur l'utilisation d'un arbre de décision comme modèle prédictif. On l'utilise notamment en fouille de données et en apprentissage automatique. Dans ces structures d'arbre, les feuilles représentent les valeurs de la variable-cible et les embranchements correspondent à des combinaisons de variables d'entrée qui mènent à ces valeurs. En analyse de décision, un arbre de décision peut être utilisé pour représenter de manière explicite les décisions réalisées et les processus qui les amènent.