Because matrix multiplication is such a central operation in many numerical algorithms, much work has been invested in making matrix multiplication algorithms efficient. Applications of matrix multiplication in computational problems are found in many fields including scientific computing and pattern recognition and in seemingly unrelated problems such as counting the paths through a graph. Many different algorithms have been designed for multiplying matrices on different types of hardware, including parallel and distributed systems, where the computational work is spread over multiple processors (perhaps over a network).
En algèbre linéaire, la trace d'une matrice carrée A est définie comme la somme de ses coefficients diagonaux et souvent notée Tr(A). La trace peut être vue comme une forme linéaire sur l'espace vectoriel des matrices. Elle vérifie l'identité : Tr(AB) = Tr(BA), et est en conséquence invariante par similitude. De façon voisine, si u est un endomorphisme d'un espace vectoriel de dimension finie sur un corps commutatif K, on peut définir la trace de l'opérateur u, par exemple comme trace de sa matrice dans n'importe quelle base.
En mathématiques, et plus particulièrement en algèbre linéaire, le concept de vecteur propre est une notion algébrique s'appliquant à une application linéaire d'un espace dans lui-même. Il correspond à l'étude des axes privilégiés, selon lesquels l'application se comporte comme une dilatation, multipliant les vecteurs par une même constante. Ce rapport de dilatation est appelé valeur propre, les vecteurs auxquels il s'applique s'appellent vecteurs propres, réunis en un espace propre.
Le produit matriciel désigne la multiplication de matrices, initialement appelé la « composition des tableaux ». Il s'agit de la façon la plus fréquente de multiplier des matrices entre elles. En algèbre linéaire, une matrice A de dimensions m lignes et n colonnes (matrice m×n) représente une application linéaire ƒ d'un espace de dimension n vers un espace de dimension m. Une matrice colonne V de n lignes est une matrice n×1, et représente un vecteur v d'un espace vectoriel de dimension n. Le produit A×V représente ƒ(v).
En mathématiques, le produit tensoriel est un moyen commode de coder les objets multilinéaires. Il est utilisé en algèbre, en géométrie différentielle, en géométrie riemannienne, en analyse fonctionnelle et en physique (mécanique des solides, relativité générale et mécanique quantique). Théorème et définition. Soient et deux espaces vectoriels sur un corps commutatif .
vignette|Algorithme de Strassen où sont représentés les matrices Ci,j ainsi que les 7 nouvelles matrices Mi En mathématiques, plus précisément en algèbre linéaire, l’algorithme de Strassen est un algorithme calculant le produit de deux matrices carrées de taille n, proposé par Volker Strassen en 1969. La complexité de l'algorithme est en , avec pour la première fois un exposant inférieur à celui de la multiplication naïve qui est en . Par contre, il a l'inconvénient de ne pas être stable numériquement.
En informatique théorique, la complexité de la multiplication de matrices est le nombre d'opérations requises pour l'opération de produit matriciel. Les algorithmes de multiplication de matrices constituent un sujet central dans les algorithmes théoriques et numériques en algèbre linéaire numérique et en optimisation, donc déterminer la complexité en temps du produit est d'une importance pratique. L'application directe de la définition mathématique de la multiplication de matrices donne un algorithme qui nécessite opérations sur le corps de base pour multiplier deux matrices d'ordre .
Le moment d'inertie d'un système physique est une grandeur qui caractérise son inertie vis-à-vis des mouvements de rotation, comme sa masse caractérise son inertie vis-à-vis des mouvements de translation. Il dépend de la valeur et de la répartition des masses au sein du système et a pour dimension (produit d'une masse par le carré d'une longueur) ; il s'exprime donc en dans le Système international d'unités.
Les relations interpersonnelles, domaine relatif aux relations humaines, ont lieu lorsqu'au moins deux personnes sont en interaction. Il s'agit d'un sujet d'étude clé de la psychologie sociale pour la compréhension des rapports ayant lieu au sein de petits groupes de personnes ou plus largement à l'intérieur de groupes sociaux. Ce sujet étudie comment les comportements individuels sont influencés par ceux des autres personnes et s'y opposent ou s'y adaptent. Il intéresse aussi la sociologie au niveau de la structuration des relations humaines.
En cryptologie, la longueur de clé ( ou key length) est la taille mesurée en bits de la clé de chiffrement (ou de signature) utilisée par un algorithme de chiffrement. La longueur de la clé est différente de la sécurité cryptographique, qui est la mesure de l'attaque la plus rapide contre un algorithme, aussi mesurée en bits. La sécurité évaluée d'un cryptosystème ne peut pas dépasser sa longueur de clé (étant donné que tout algorithme peut être cassé par force brute), mais elle peut être plus petite.