Clé de chiffrementUne clé est un paramètre utilisé en entrée d'une opération cryptographique (chiffrement, déchiffrement, scellement, signature numérique, vérification de signature). Une clé de chiffrement peut être symétrique (cryptographie symétrique) ou asymétrique (cryptographie asymétrique). Dans le premier cas, la même clé sert à chiffrer et à déchiffrer. Dans le second cas on utilise deux clés différentes, la clé publique est utilisée au chiffrement alors que celle servant au déchiffrement est gardée secrète : la clé secrète, ou clé privée, et ne peut pas se déduire de la clé publique.
Optimisation non linéaireEn optimisation, vue comme branche des mathématiques, l'optimisation non linéaire (en anglais : nonlinear programming – NLP) s'occupe principalement des problèmes d'optimisation dont les données, i.e., les fonctions et ensembles définissant ces problèmes, sont non linéaires, mais sont aussi différentiables autant de fois que nécessaire pour l'établissement des outils théoriques, comme les conditions d'optimalité, ou pour la bonne marche des algorithmes de résolution qui y sont introduits et analysés.
Calcul multipartite sécuriséLe calcul multipartite sécurisé (en anglais, secure multi-party computation) est une branche de la cryptographie dont l'objectif est de permettre aux agents d'un réseau de communication de calculer conjointement une fonction sur leurs entrées, afin que les entrées restent privées et que le résultat soit exact. Cela peut être réalisé, par exemple, par transferts inconscient ou par chiffrement homomorphe. Contrairement aux constructions classiques en cryptographie, où l'attaquant est extérieur au système (à la manière d’un espion), l'attaquant fait ici partie des intervenants au sein du système.
Gaussian eliminationIn mathematics, Gaussian elimination, also known as row reduction, is an algorithm for solving systems of linear equations. It consists of a sequence of operations performed on the corresponding matrix of coefficients. This method can also be used to compute the rank of a matrix, the determinant of a square matrix, and the inverse of an invertible matrix. The method is named after Carl Friedrich Gauss (1777–1855).
Cryptographie asymétriquevignette|320x320px|Schéma du chiffrement asymétrique: une clé sert à chiffrer et une seconde à déchiffrer La cryptographie asymétrique, ou cryptographie à clé publique est un domaine relativement récent de la cryptographie. Elle permet d'assurer la confidentialité d'une communication, ou d'authentifier les participants, sans que cela repose sur une donnée secrète partagée entre ceux-ci, contrairement à la cryptographie symétrique qui nécessite ce secret partagé préalable.
Optimisation (mathématiques)L'optimisation est une branche des mathématiques cherchant à modéliser, à analyser et à résoudre analytiquement ou numériquement les problèmes qui consistent à minimiser ou maximiser une fonction sur un ensemble. L’optimisation joue un rôle important en recherche opérationnelle (domaine à la frontière entre l'informatique, les mathématiques et l'économie), dans les mathématiques appliquées (fondamentales pour l'industrie et l'ingénierie), en analyse et en analyse numérique, en statistique pour l’estimation du maximum de vraisemblance d’une distribution, pour la recherche de stratégies dans le cadre de la théorie des jeux, ou encore en théorie du contrôle et de la commande.
Dualité (optimisation)En théorie de l'optimisation, la dualité ou principe de dualité désigne le principe selon lequel les problèmes d'optimisation peuvent être vus de deux perspectives, le problème primal ou le problème dual, et la solution du problème dual donne une borne inférieure à la solution du problème (de minimisation) primal. Cependant, en général les valeurs optimales des problèmes primal et dual ne sont pas forcément égales : cette différence est appelée saut de dualité. Pour les problèmes en optimisation convexe, ce saut est nul sous contraintes.
Décomposition en valeurs singulièresEn mathématiques, le procédé d'algèbre linéaire de décomposition en valeurs singulières (ou SVD, de l'anglais singular value decomposition) d'une matrice est un outil important de factorisation des matrices rectangulaires réelles ou complexes. Ses applications s'étendent du traitement du signal aux statistiques, en passant par la météorologie. Le théorème spectral énonce qu'une matrice normale peut être diagonalisée par une base orthonormée de vecteurs propres.
Tensor Processing Unitvignette|Un Tensor Processing Unit 3.0 datant de mai 2016 Un Tensor Processing Unit (TPU, unité de traitement de tenseur) est un circuit intégré spécifique pour une application (ASIC), développé par Google spécifiquement pour accélérer les systèmes d'intelligence artificielle par réseaux de neurones. Les TPU ont été annoncés en 2016 au Google I/O, lorsque la société a déclaré les utiliser dans leurs centres de données depuis plus d'un an.
Produit matriciel de Hadamardvignette|Illustration du produit de Hadamard: il s'applique à deux matrices de mêmes dimensions et la matrice en resultant a les mêmes dimensions également. En mathématiques, le produit matriciel de Hadamard, nommé d'après le mathématicien français Jacques Hadamard et parfois désigné produit de Schur, est une opération binaire qui pour deux matrices de mêmes dimensions, associe une autre matrice, de même dimension, et où chaque coefficient est le produit terme à terme des deux matrices.