Champ magnétiqueEn physique, dans le domaine de l'électromagnétisme, le champ magnétique est une grandeur ayant le caractère d'un champ vectoriel, c'est-à-dire caractérisée par la donnée d'une norme, d’une direction et d’un sens, définie en tout point de l'espace et permettant de modéliser et quantifier les effets magnétiques du courant électrique ou des matériaux magnétiques comme les aimants permanents.
Champ de vecteursthumb|Un exemple de champ de vecteurs, de la forme (-y,x). thumb|Autre exemple. thumb|Le flux d'air autour d'un avion est un champ tridimensionnel (champ des vitesses des particules d'air), ici visualisé par les bulles qui matérialisent les lignes de courant. En mathématiques, un champ de vecteurs ou champ vectoriel est une fonction qui associe un vecteur à chaque point d'un espace euclidien ou plus généralement d'une variété différentielle.
Sciences numériquesLes sciences numériques (traduction de l'anglais computational sciences), autrement dénommées calcul scientifique ou informatique scientifique, ont pour objet la construction de modèles mathématiques et de méthodes d'analyse quantitative, en se basant sur l'utilisation des sciences du numérique, pour analyser et résoudre des problèmes scientifiques. Cette approche scientifique basée sur un recours massif aux modélisations informatiques et mathématiques et à la simulation se décline en : médecine numérique, biologie numérique, archéologie numérique, mécanique numérique, par exemple.
Reconnexion magnétiquedroite|vignette|380px|Reconnexion magnétique: Ce schéma est une coupe à travers quatre domaines magnétiques séparés par une interface propice à un phénomène de reconnexion. Deux séparatrices (voir texte) divisent l'espace en quatre domaines magnétiques avec un point critique (de stagnation) au centre de la figure. Les larges flèches jaunes indiquent le mouvement général du plasma. Les lignes magnétiques et le plasma qui les porte s'écoulent vers le centre à partir du haut (lignes rouges) et du bas (lignes bleues) de l'image, reconnectent au niveau de la zone critique, puis s'évacuent vers l'extérieur à gauche et à droite.
Lockheed Martin Compact Fusion ReactorThe Lockheed Martin Compact Fusion Reactor (CFR) is a fusion power project at Lockheed Martin’s Skunk Works. Its high-beta configuration, which implies that the ratio of plasma pressure to magnetic pressure is greater than or equal to 1 (compared to tokamak designs' 0.05), allows a compact design and expedited development. The project was active between 2010 and 2019, after that date there have been no updates and it appears the division has shut down.
Courbe fermée de type tempsDans une variété lorentzienne de la géométrie différentielle, on appelle , courbe de genre temps fermée ou courbe temporelle fermée (closed timelike curve, ou en abrégé CTC, en anglais) la ligne d'univers d'une particule matérielle fermée dans l'espace-temps, c'est-à-dire capable de retourner au même point et à son instant de départ. a évoqué cette possibilité en 1937 et Kurt Gödel en 1949. Si l’existence des CTC était prouvée, cela pourrait au moins impliquer la possibilité théorique de construire une machine à voyager dans le temps, ainsi qu’une reformulation du paradoxe du grand-père.
Ligne de champthumb|upright=1.5|Lignes de champ électrique autour de deux particules de même charges (gauche) et de charges opposées (droite). En physique et en mathématiques, afin de visualiser un champ vectoriel, on utilise souvent la notion de ligne de champ. C'est, en première approximation, le chemin que l'on suivrait en partant d'un point et en suivant les vecteurs. Ces lignes de champ sont orthogonales aux équipotentielles du même champ. La densité des lignes de champs en un point donné va dépendre de la magnitude du champ en ce point.
Numerical methods for ordinary differential equationsNumerical methods for ordinary differential equations are methods used to find numerical approximations to the solutions of ordinary differential equations (ODEs). Their use is also known as "numerical integration", although this term can also refer to the computation of integrals. Many differential equations cannot be solved exactly. For practical purposes, however – such as in engineering – a numeric approximation to the solution is often sufficient. The algorithms studied here can be used to compute such an approximation.
Méthodes de Runge-KuttaLes méthodes de Runge-Kutta sont des méthodes d'analyse numérique d'approximation de solutions d'équations différentielles. Elles ont été nommées ainsi en l'honneur des mathématiciens Carl Runge et Martin Wilhelm Kutta, lesquels élaborèrent la méthode en 1901. Ces méthodes reposent sur le principe de l'itération, c'est-à-dire qu'une première estimation de la solution est utilisée pour calculer une seconde estimation, plus précise, et ainsi de suite. Considérons le problème suivant : que l'on va chercher à résoudre en un ensemble discret t < t < .
Plasma stabilityThe stability of a plasma is an important consideration in the study of plasma physics. When a system containing a plasma is at equilibrium, it is possible for certain parts of the plasma to be disturbed by small perturbative forces acting on it. The stability of the system determines if the perturbations will grow, oscillate, or be damped out. In many cases, a plasma can be treated as a fluid and its stability analyzed with magnetohydrodynamics (MHD).