Transversal (combinatorics)In mathematics, particularly in combinatorics, given a family of sets, here called a collection C, a transversal (also called a cross-section) is a set containing exactly one element from each member of the collection. When the sets of the collection are mutually disjoint, each element of the transversal corresponds to exactly one member of C (the set it is a member of). If the original sets are not disjoint, there are two possibilities for the definition of a transversal: One variation is that there is a bijection f from the transversal to C such that x is an element of f(x) for each x in the transversal.
Additive identityIn mathematics, the additive identity of a set that is equipped with the operation of addition is an element which, when added to any element x in the set, yields x. One of the most familiar additive identities is the number 0 from elementary mathematics, but additive identities occur in other mathematical structures where addition is defined, such as in groups and rings. The additive identity familiar from elementary mathematics is zero, denoted 0.
Transversal (geometry)In geometry, a transversal is a line that passes through two lines in the same plane at two distinct points. Transversals play a role in establishing whether two or more other lines in the Euclidean plane are parallel. The intersections of a transversal with two lines create various types of pairs of angles: consecutive interior angles, consecutive exterior angles, corresponding angles, and alternate angles. As a consequence of Euclid's parallel postulate, if the two lines are parallel, consecutive interior angles are supplementary, corresponding angles are equal, and alternate angles are equal.
Product of group subsetsIn mathematics, one can define a product of group subsets in a natural way. If S and T are subsets of a group G, then their product is the subset of G defined by The subsets S and T need not be subgroups for this product to be well defined. The associativity of this product follows from that of the group product. The product of group subsets therefore defines a natural monoid structure on the power set of G. A lot more can be said in the case where S and T are subgroups.
Position généraleEn géométrie algébrique et en géométrie algorithmique, une position générale est une notion de pour un ensemble d'objets géométriques (points, droites, courbes, plans, ...). C'est ce qu'on entend quand on parle du cas général, en opposition aux cas particuliers qui peuvent apparaître, auxquels cas on parlera de position spéciale. Cette expression peut changer de sens selon le contexte. Par exemple, deux droites d'un même plan, dans le cas général, se croisent en un point unique, et on dira alors : "deux droites génériques se croisent en un point", ce qui est derrière la notion de point générique.
Développement décimalEn mathématiques, le développement décimal est une façon d'écrire des nombres réels positifs à l'aide des puissances de dix (d'exposant positif ou négatif). Lorsque les nombres sont des entiers naturels, le développement décimal correspond à l'écriture en base dix. Lorsqu'ils sont décimaux, on obtient un développement décimal limité. Lorsqu'ils sont rationnels, on obtient soit, encore, un développement décimal limité, soit un développement décimal illimité, mais alors nécessairement périodique.
Hall-type theorems for hypergraphsIn the mathematical field of graph theory, Hall-type theorems for hypergraphs are several generalizations of Hall's marriage theorem from graphs to hypergraphs. Such theorems were proved by Ofra Kessler, Ron Aharoni, Penny Haxell, Roy Meshulam, and others. Hall's marriage theorem provides a condition guaranteeing that a bipartite graph (X + Y, E) admits a perfect matching, or - more generally - a matching that saturates all vertices of Y. The condition involves the number of neighbors of subsets of Y.
Carl Friedrich GaussJohann Carl Friedrich Gauß ( ; traditionnellement transcrit Gauss en français ; Carolus Fridericus Gauss en latin), né le à Brunswick et mort le à Göttingen, est un mathématicien, astronome et physicien allemand. Il a apporté de très importantes contributions à ces trois domaines. Surnommé « le prince des mathématiciens », il est considéré comme l'un des plus grands mathématiciens de tous les temps. La qualité extraordinaire de ses travaux scientifiques était déjà reconnue par ses contemporains.
Système de numérationvignette|Table d'équivalence entre le système de numération de Kaktovik (utilisant une base 20) et le système décimal. Un système de numération est un ensemble de règles qui régissent une, voire plusieurs numérations données. De façon plus explicite, c'est un ensemble de règles d'utilisation des signes, des mots ou des gestes permettant d'écrire, d'énoncer ou de mimer les nombres, ces derniers étant nés, sous leur forme écrite, en même temps que l'écriture, de la nécessité d'organiser les récoltes, le commerce et la datation.
Système hexadécimalLe système hexadécimal est un système de numération positionnel en base 16. Il utilise ainsi 16 symboles, en général les chiffres arabes pour les dix premiers chiffres et les lettres A à F pour les six suivants (en majuscule ou minuscule). Le système hexadécimal est utilisé notamment en électronique numérique et en informatique car il est particulièrement commode et permet un compromis entre le code binaire des machines et une base de numération pratique à utiliser pour les ingénieurs.