Grade universitaireUn grade universitaire est un degré dans la hiérarchie des études supérieures. Il est attesté par un diplôme délivré par les universités et autres institutions d’études supérieures. Les grades sont conférés aux titulaires de diplômes de l'enseignement supérieur délivrés par les universités et les établissements habilités. Les grades peuvent être également conférés aux titulaires de certains diplômes propres à des établissements. À ces grades peuvent être associés un certain nombre de droits et de privilèges, pouvant varier suivant les disciplines et les finalités.
Definite quadratic formIn mathematics, a definite quadratic form is a quadratic form over some real vector space V that has the same sign (always positive or always negative) for every non-zero vector of V. According to that sign, the quadratic form is called positive-definite or negative-definite. A semidefinite (or semi-definite) quadratic form is defined in much the same way, except that "always positive" and "always negative" are replaced by "never negative" and "never positive", respectively.
Notation (mathématiques)On utilise en mathématiques un ensemble de notations pour condenser et formaliser les énoncés et les démonstrations. Ces notations se sont dégagées peu à peu au fil de l'histoire des mathématiques et de l’émergence des concepts associés à ces notations. Elles ne sont pas totalement standardisées. Quand deux traductions d'une notation sont données, l'une est la traduction mot à mot et l'autre est la traduction naturelle. Le présent article traite des notations mathématiques latines.
Mathematical objectA mathematical object is an abstract concept arising in mathematics. In the usual language of mathematics, an object is anything that has been (or could be) formally defined, and with which one may do deductive reasoning and mathematical proofs. Typically, a mathematical object can be a value that can be assigned to a variable, and therefore can be involved in formulas. Commonly encountered mathematical objects include numbers, sets, functions, expressions, geometric objects, transformations of other mathematical objects, and spaces.
Degré de TuringEn informatique et en logique mathématique, le degré de Turing (nommé d'après Alan Turing) ou le degré d'insolubilité d'un ensemble d'entiers naturels mesure le niveau d'insolubilité algorithmique de l'ensemble. Le concept de degré de Turing est fondamental dans la théorie de la calculabilité, où des ensembles d'entiers naturels sont souvent considérés comme des problèmes de décision. Le degré de Turing d'un ensemble révèle combien il est difficile de résoudre le problème de décision associé à cet ensemble, à savoir, déterminer si un nombre arbitraire est dans l'ensemble donné.
Fonction Cauchy-continueEn mathématiques et plus précisément en topologie, la continuité de Cauchy, pour une application entre espaces métriques (ou entre espaces plus généraux, comme des espaces uniformes), est une propriété plus faible que la continuité uniforme, mais suffisante pour assurer l'existence d'un prolongement continu de cette application au complété de l'espace de départ, dès que l'espace d'arrivée est complet. Soient X et Y deux espaces métriques. Une application f de X dans Y est dite Cauchy-continue si pour toute suite de Cauchy (x) dans X, la suite (f(x)) dans Y est de Cauchy.
Arbre kdvignette|Partition d'un espace à trois dimensions pour la construction d'un arbre 3-d. En informatique, un arbre k-d (ou k-d tree, pour k-dimensional tree) est une structure de données de partition de l'espace permettant de stocker des points, et de faire des recherches (recherche par plage, plus proche voisin, etc.) plus rapidement qu'en parcourant linéairement le tableau de points. Les arbres k-d sont des cas particuliers d'arbres BSP (binary space partition trees).
Label (computer science)In programming languages, a label is a sequence of characters that identifies a location within source code. In most languages, labels take the form of an identifier, often followed by a punctuation character (e.g., a colon). In many high-level languages, the purpose of a label is to act as the destination of a GOTO statement. In assembly language, labels can be used anywhere an address can (for example, as the operand of a JMP or MOV instruction). Also in Pascal and its derived variations.
Goto (informatique)L’instruction goto (littéralement va à) est une instruction présente dans de nombreux langages de programmation. Elle est utilisée pour réaliser des sauts inconditionnels dans un programme, changeant ainsi le flot de contrôle naturel du programme qui consiste à aller exécuter l'instruction suivante. L’exécution est alors envoyée à une autre instruction repérée par une étiquette ou label, qui est soit un numéro de ligne, soit une étiquette déclarée, selon le langage.