Third-generation photovoltaic cellThird-generation photovoltaic cells are solar cells that are potentially able to overcome the Shockley–Queisser limit of 31–41% power efficiency for single bandgap solar cells. This includes a range of alternatives to cells made of semiconducting p-n junctions ("first generation") and thin film cells ("second generation"). Common third-generation systems include multi-layer ("tandem") cells made of amorphous silicon or gallium arsenide, while more theoretical developments include frequency conversion, (i.e.
Effet HallL'effet Hall « classique » a été découvert en 1879 par Edwin Herbert Hall, qui l'a énoncé comme suit : « un courant électrique traversant un matériau baignant dans un champ magnétique, engendre une tension perpendiculaire à ce dernier ». Sous certaines conditions, cette tension croît par paliers, effet caractéristique de la physique quantique, c'est l'effet Hall quantique entier ou l'effet Hall quantique fractionnaire.
SpiraleEn géométrie plane, les spirales forment une famille de courbes d'allure similaire : une partie de la courbe semble s'approcher d'un point fixe tout en tournant autour de lui, tandis que l'autre extrémité semble s'en éloigner. Une courbe plane dont l'équation polaire est du type où f est une fonction monotone est une spirale. On trouve aussi le terme de spirale pour des courbes en dimension trois qui tournent autour d'un axe en s'en éloignant ou s'en rapprochant comme les ou en restant à distance fixe comme l'hélice circulaire.
Spirale logarithmiqueUne spirale logarithmique est une courbe dont l'équation polaire est de la forme : où a et b sont des réels strictement positifs (b différent de 1) et la fonction exponentielle de base b. Cette courbe étudiée au a suscité l'admiration de Jacques Bernoulli pour ses propriétés d'invariance. On la trouve dans la nature, par exemple dans la croissance de coquillages ou pour la disposition des graines de tournesol. Le nom de spirale logarithmique lui est donné par Pierre Varignon.
Spirale de Fermatvignette|Les deux branches de la spirale de Fermat d'équation ρ2 = θ (noire pour ρ positif et rouge pour ρ négatif) Une spirale de Fermat est une courbe plane d'équation polaire: Son nom est une référence au mathématicien Pierre de Fermat qui la décrit dans une lettre à Marin Mersenne en 1636 et présente sa propriété d'aire balayée par un rayon. Cette courbe a aussi été étudiée par Pierre Varignon en 1704 dans le cadre de son étude générale des spirales d'équation polaire .