Théorie du chaosLa théorie du chaos est une théorie scientifique rattachée aux mathématiques et à la physique qui étudie le comportement des systèmes dynamiques sensibles aux conditions initiales, un phénomène généralement illustré par l'effet papillon. Dans de nombreux systèmes dynamiques, des modifications infimes des conditions initiales entraînent des évolutions rapidement divergentes, rendant toute prédiction impossible à long terme.
Système dynamiqueEn mathématiques, en chimie ou en physique, un système dynamique est la donnée d’un système et d’une loi décrivant l'évolution de ce système. Ce peut être l'évolution d'une réaction chimique au cours du temps, le mouvement des planètes dans le système solaire (régi par la loi universelle de la gravitation de Newton) ou encore l'évolution de la mémoire d'un ordinateur sous l'action d'un programme informatique. Formellement on distingue les systèmes dynamiques à temps discrets (comme un programme informatique) des systèmes dynamiques à temps continu (comme une réaction chimique).
Théorie des systèmes dynamiquesLa théorie des systèmes dynamiques désigne couramment la branche des mathématiques qui s'efforce d'étudier les propriétés d'un système dynamique. Cette recherche active se développe à la frontière de la topologie, de l'analyse, de la géométrie, de la théorie de la mesure et des probabilités. La nature de cette étude est conditionnée par le système dynamique étudié et elle dépend des outils utilisés (analytiques, géométriques ou probabilistes).
Nonlinear systemIn mathematics and science, a nonlinear system (or a non-linear system) is a system in which the change of the output is not proportional to the change of the input. Nonlinear problems are of interest to engineers, biologists, physicists, mathematicians, and many other scientists since most systems are inherently nonlinear in nature. Nonlinear dynamical systems, describing changes in variables over time, may appear chaotic, unpredictable, or counterintuitive, contrasting with much simpler linear systems.
Système complexevignette|Visualisation sous forme de graphe d'un réseau social illustrant un système complexe. Un système complexe est un ensemble constitué d'un grand nombre d'entités en interaction dont l'intégration permet d'achever un but commun. Les systèmes complexes sont caractérisés par des propriétés émergentes qui n'existent qu'au niveau du système et ne peuvent pas être observées au niveau de ses constituants. Dans certains cas, un observateur ne peut pas prévoir les rétroactions ou les comportements ou évolutions des systèmes complexes par le calcul, ce qui amène à les étudier à l'aide de la théorie du chaos.
Hadamard's dynamical systemIn physics and mathematics, the Hadamard dynamical system (also called Hadamard's billiard or the Hadamard–Gutzwiller model) is a chaotic dynamical system, a type of dynamical billiards. Introduced by Jacques Hadamard in 1898, and studied by Martin Gutzwiller in the 1980s, it is the first dynamical system to be proven chaotic. The system considers the motion of a free (frictionless) particle on the Bolza surface, i.e, a two-dimensional surface of genus two (a donut with two holes) and constant negative curvature; this is a compact Riemann surface.
Signal électriquevignette|Signaux électriques sur l'écran d'un oscilloscope : signal rectanglaire (haut), signal harmonique ou sinusoïdal (bas). Un signal électrique est une grandeur électrique dont la variation dans le temps transporte une information, d'une source à une destination. La grandeur électrique que l'on considère pour la transmission et le traitement du signal peut être directement la différence de potentiel ou l'intensité d'un courant électrique ; ou bien une modulation de l'amplitude, de la fréquence ou de la phase d'une variation périodique de ces grandeurs, qu'on appelle porteuse ; dans les communications numériques par modem des règles complexes régissent la modulation afin d'occuper au mieux la largeur de bande allouée.
Deterministic systemIn mathematics, computer science and physics, a deterministic system is a system in which no randomness is involved in the development of future states of the system. A deterministic model will thus always produce the same output from a given starting condition or initial state. Physical laws that are described by differential equations represent deterministic systems, even though the state of the system at a given point in time may be difficult to describe explicitly.
AttracteurDans l'étude des systèmes dynamiques, un attracteur (ou ensemble-limite) est un ensemble d'états vers lequel un système évolue de façon irréversible en l'absence de perturbations. Constituants de base de la théorie du chaos, au moins cinq types sont définis : ponctuel, quasi périodique, périodique, étrange et spatial. Stephen Smale serait à l'origine du terme attracteur.
Attracteur de LorenzL’attracteur de Lorenz est une structure fractale correspondant au comportement à long terme de l'oscillateur de Lorenz. L'attracteur montre comment les différentes variables du système dynamique évoluent dans le temps en une trajectoire non périodique. En 1963, le météorologue Edward Lorenz est le premier à mettre en évidence le caractère vraisemblablement chaotique de la météorologie. Le modèle de Lorenz, appelé aussi système dynamique de Lorenz ou oscillateur de Lorenz, est une modélisation simplifiée de phénomènes météorologiques basée sur la mécanique des fluides.