Analyse numériqueL’analyse numérique est une discipline à l'interface des mathématiques et de l'informatique. Elle s’intéresse tant aux fondements qu’à la mise en pratique des méthodes permettant de résoudre, par des calculs purement numériques, des problèmes d’analyse mathématique. Plus formellement, l’analyse numérique est l’étude des algorithmes permettant de résoudre numériquement par discrétisation les problèmes de mathématiques continues (distinguées des mathématiques discrètes).
Stabilité numériqueEn analyse numérique, une branche des mathématiques, la stabilité numérique est une propriété globale d’un algorithme numérique, une qualité nécessaire pour espérer obtenir des résultats ayant du sens. Une définition rigoureuse de la stabilité dépend du contexte. Elle se réfère à la propagation des erreurs au cours des étapes du calcul, à la capacité de l’algorithme de ne pas trop amplifier d’éventuels écarts, à la précision des résultats obtenus. Le concept de stabilité ne se limite pas aux erreurs d’arrondis et à leurs conséquences.
Calcul numérique d'une intégraleEn analyse numérique, il existe une vaste famille d’algorithmes dont le but principal est d’estimer la valeur numérique de l’intégrale définie sur un domaine particulier pour une fonction donnée (par exemple l’intégrale d’une fonction d’une variable sur un intervalle). Ces techniques procèdent en trois phases distinctes : Décomposition du domaine en morceaux (un intervalle en sous-intervalles contigus) ; Intégration approchée de la fonction sur chaque morceau ; Sommation des résultats numériques ainsi obtenus.
Mécanique des fluides numériqueLa mécanique des fluides numérique (MFN), plus souvent désignée par le terme anglais computational fluid dynamics (CFD), consiste à étudier les mouvements d'un fluide, ou leurs effets, par la résolution numérique des équations régissant le fluide. En fonction des approximations choisies, qui sont en général le résultat d'un compromis en termes de besoins de représentation physique par rapport aux ressources de calcul ou de modélisation disponibles, les équations résolues peuvent être les équations d'Euler, les équations de Navier-Stokes, etc.
Numerical methods for partial differential equationsNumerical methods for partial differential equations is the branch of numerical analysis that studies the numerical solution of partial differential equations (PDEs). In principle, specialized methods for hyperbolic, parabolic or elliptic partial differential equations exist. Finite difference method In this method, functions are represented by their values at certain grid points and derivatives are approximated through differences in these values.
Équations d'EulerEn mécanique des fluides, les équations d'Euler sont des équations aux dérivées partielles non linéaires qui décrivent l'écoulement des fluides (liquide ou gaz) dans l’approximation des milieux continus. Ces écoulements sont adiabatiques, sans échange de quantité de mouvement par viscosité ni d'énergie par conduction thermique. L'histoire de ces équations remonte à Leonhard Euler qui les a établies pour des écoulements incompressibles (1757).
PréconditionneurEn algèbre linéaire et en analyse numérique, un préconditionneur d'une matrice est une matrice telle que le conditionnement de est plus petit que celui de . Le préconditionnement est surtout utilisé dans les méthodes itératives pour la résolution d'un système linéaire (méthode du gradient, méthode du gradient conjugué, ...). Au lieu de résoudre, on préfère résoudre qui permet de diminuer considérablement le nombre d'itérations dans la méthode de résolution (itérative). On dit que le système est "mieux" conditionné.
Numerical linear algebraNumerical linear algebra, sometimes called applied linear algebra, is the study of how matrix operations can be used to create computer algorithms which efficiently and accurately provide approximate answers to questions in continuous mathematics. It is a subfield of numerical analysis, and a type of linear algebra. Computers use floating-point arithmetic and cannot exactly represent irrational data, so when a computer algorithm is applied to a matrix of data, it can sometimes increase the difference between a number stored in the computer and the true number that it is an approximation of.
Numerical methods for ordinary differential equationsNumerical methods for ordinary differential equations are methods used to find numerical approximations to the solutions of ordinary differential equations (ODEs). Their use is also known as "numerical integration", although this term can also refer to the computation of integrals. Many differential equations cannot be solved exactly. For practical purposes, however – such as in engineering – a numeric approximation to the solution is often sufficient. The algorithms studied here can be used to compute such an approximation.
Parallélisme (informatique)vignette|upright=1|Un des éléments de Blue Gene L cabinet, un des supercalculateurs massivement parallèles les plus rapides des années 2000. En informatique, le parallélisme consiste à mettre en œuvre des architectures d'électronique numérique permettant de traiter des informations de manière simultanée, ainsi que les algorithmes spécialisés pour celles-ci. Ces techniques ont pour but de réaliser le plus grand nombre d'opérations en un temps le plus petit possible.