Représentation de SchrödingerEn mécanique quantique, la représentation de Schrödinger est une des trois formulations et modes de traitement des problèmes dépendant du temps dans le cadre de la mécanique quantique classique. Dans cette représentation, l'état d'un système évolue avec le temps. Le principe de superposition quantique stipule qu'une fonction d'état est en général une combinaison linéaire d'états propres.
AutoadjointEn mathématiques, un élément x d'une algèbre involutive A est dit autoadjoint si x* = x ; plus généralement, une partie de A est dite autoadjointe si elle est stable par l'involution * (comme la partie {y, y*}, pour tout élément y de A). Sur la C*-algèbre des opérateurs bornés sur un espace de Hilbert H, l'involution est l'application qui à tout opérateur borné associe son adjoint, et les éléments autoadjoints sont appelés les opérateurs autoadjoints.
Opérateur adjointEn mathématiques, un opérateur adjoint est un opérateur sur un espace préhilbertien qui est défini, lorsque c'est possible, à partir d'un autre opérateur a et que l'on note a*. On dit aussi que a* est l'adjoint de a. Cet opérateur adjoint permet de faire passer l'opérateur a de la partie gauche du produit scalaire définissant l'espace préhilbertien à la partie droite du produit scalaire. Il s'agit donc d'une généralisation de la notion de matrice adjointe à des espaces de dimension infinie.
Introduction à la mécanique quantiqueLe but de cet article est de présenter une introduction accessible, non technique, au sujet. Pour l'article encyclopédique consulter Mécanique quantique. La mécanique quantique est la science de l'infiniment petit : elle regroupe l'ensemble des travaux scientifiques qui interprètent le comportement des constituants de la matière, et ses interactions avec l'énergie, à l'échelle des atomes et des particules subatomiques. La physique classique décrit la matière et l'énergie à l'échelle humaine, dans leur observation de tous les jours, y compris les corps célestes.
Relativistic wave equationsIn physics, specifically relativistic quantum mechanics (RQM) and its applications to particle physics, relativistic wave equations predict the behavior of particles at high energies and velocities comparable to the speed of light. In the context of quantum field theory (QFT), the equations determine the dynamics of quantum fields. The solutions to the equations, universally denoted as ψ or Ψ (Greek psi), are referred to as "wave functions" in the context of RQM, and "fields" in the context of QFT.
Physique des particulesLa physique des particules ou la physique subatomique est la branche de la physique qui étudie les constituants élémentaires de la matière et les rayonnements, ainsi que leurs interactions. On l'appelle aussi parfois physique des hautes énergies car de nombreuses particules élémentaires, instables, n'existent pas à l'état naturel et peuvent seulement être détectées lors de collisions à hautes énergies entre particules stables dans les accélérateurs de particules.
Induction électriqueEn électromagnétisme, l’induction électrique, notée , représente en quelque sorte la densité de charge par unité d'aire (en ) ressentie en un certain point : par exemple, une sphère de rayon entourant une charge subit à cause d'elle en chacun de ses points un certain champ électrique, identique à celui qu'engendrerait la même charge uniformément répartie sur l'aire de la sphère. La densité de charge surfacique ainsi obtenue est alors l'intensité de l'induction électrique.
Creation and annihilation operatorsCreation operators and annihilation operators are mathematical operators that have widespread applications in quantum mechanics, notably in the study of quantum harmonic oscillators and many-particle systems. An annihilation operator (usually denoted ) lowers the number of particles in a given state by one. A creation operator (usually denoted ) increases the number of particles in a given state by one, and it is the adjoint of the annihilation operator.
Effet StarkEn physique atomique, l'effet Stark (du nom de son découvreur Johannes Stark) est la modification des états électroniques sous l'action d'un champ électrique qui se traduit par l'éclatement et le décalage de raies spectrales en plusieurs composantes. La valeur énergétique de ce décalage s'appelle le décalage Stark (Stark shift). C'est un effet analogue à l'effet Zeeman (modification des états électroniques par application d'un champ magnétique). L'effet Stark est, entre autres, responsable de l'élargissement des raies spectrales par des particules chargées.
Algèbre d'opérateursIn functional analysis, a branch of mathematics, an operator algebra is an algebra of continuous linear operators on a topological vector space, with the multiplication given by the composition of mappings. The results obtained in the study of operator algebras are often phrased in algebraic terms, while the techniques used are often highly analytic. Although the study of operator algebras is usually classified as a branch of functional analysis, it has direct applications to representation theory, differential geometry, quantum statistical mechanics, quantum information, and quantum field theory.