En mathématiques, un élément x d'une algèbre involutive A est dit autoadjoint si x* = x ; plus généralement, une partie de A est dite autoadjointe si elle est stable par l'involution * (comme la partie {y, y*}, pour tout élément y de A).
Sur la C*-algèbre des opérateurs bornés sur un espace de Hilbert H, l'involution est l'application qui à tout opérateur borné associe son adjoint, et les éléments autoadjoints sont appelés les opérateurs autoadjoints.
Si H est de dimension finie, un endomorphisme linéaire de H est autoadjoint si et seulement si sa matrice dans une base orthonormée fixée est autoadjointe, ou hermitienne, c'est-à-dire égale à sa matrice adjointe (il en est alors de même pour sa matrice dans toute autre base orthonormée).
Dans une catégorie à involution, un endomorphisme f est dit autoadjoint si f = f.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
vignette|Une photographie de David Hilbert (1862 - 1943) qui a donné son nom aux espaces dont il est question dans cet article. En mathématiques, un espace de Hilbert est un espace vectoriel réel (resp. complexe) muni d'un produit scalaire euclidien (resp. hermitien), qui permet de mesurer des longueurs et des angles et de définir une orthogonalité. De plus, un espace de Hilbert est complet, ce qui permet d'y appliquer des techniques d'analyse. Ces espaces doivent leur nom au mathématicien allemand David Hilbert.
En mathématiques, une algèbre involutive ou une algèbre à involution est une algèbre munie d'un isomorphisme sur son algèbre opposée qui est involutif, c'est-à-dire de carré égal à l'identité. Dans cet article, K désigne un anneau commutatif, et les algèbres sur un anneau commutatif sont supposées être associatives et unitaires, et les homomorphismes entre algèbres sont supposés être unitaires, c'est-à-dire envoyer 1 sur 1. Soient A une algèbre sur K et μ la multiplication de A.
En mathématiques, et plus particulièrement en algèbre linéaire et en analyse fonctionnelle, on désigne par théorème spectral plusieurs énoncés affirmant, pour certains endomorphismes, l'existence de décompositions privilégiées, utilisant en particulier l'existence de sous-espaces propres. vignette|Une illustration du théorème spectral dans le cas fini : un ellipsoïde possède (en général) trois axes de symétrie orthogonaux (notés ici x, y et z).
The aim of the course is to review mathematical concepts learned during the bachelor cycle and apply them, both conceptually and computationally, to concrete problems commonly found in engineering and
Learn to optimize on smooth, nonlinear spaces: Join us to build your foundations (starting at "what is a manifold?") and confidently implement your first algorithm (Riemannian gradient descent).
Couvre les états des systèmes composites dans l'espace Hilbert, y compris les opérateurs, les observables, les produits tenseurs, les valeurs propres et les mesures partielles.
In diverse fields such as medical imaging, astrophysics, geophysics, or material study, a common challenge exists: reconstructing the internal volume of an object using only physical measurements taken from its exterior or surface. This scientific approach ...
We present the development of a multiphase adjoint for the Community Multiscale Air Quality (CMAQ) model, a widely used chemical transport model. The adjoint model provides location- and time-specific gradients that can be used in various applications such ...
This thesis work focuses on optimal control of partial differential equations (PDEs) with uncertain parameters, treated as a random variables. In particular, we assume that the random parameters are not observable and look for a deterministic control which ...