Spectre d'émissionLe spectre d’émission d’une espèce chimique est l’intensité d’émission de ladite espèce à différentes longueurs d’onde quand elle retourne à des niveaux d’énergie inférieurs. Il est en général centré sur plusieurs pics. Comme le spectre d’absorption, il est caractéristique de l’espèce et peut être utilisé pour son identification. thumb|757px|center|Spectre d’émission du fer.thumb|757px|center|Spectre d’émission de l'hydrogène (série de Balmer dans le visible). Spectre électromagnétique | Raie spectrale Flu
FluorescenceLa fluorescence est une émission lumineuse provoquée par l'excitation des électrons d'une molécule (ou atome), généralement par absorption d'un photon immédiatement suivie d'une émission spontanée. Fluorescence et phosphorescence sont deux formes différentes de luminescence qui diffèrent notamment par la durée de l'émission après excitation : la fluorescence cesse très rapidement tandis que la phosphorescence perdure plus longtemps. La fluorescence peut entre autres servir à caractériser un matériau.
Nombre ordinalvignette|Spirale représentant les nombres ordinaux inférieurs à ωω. En mathématiques, on appelle nombre ordinal un objet permettant de caractériser le type d'ordre d'un ensemble bien ordonné quelconque, tout comme en linguistique, les mots premier, deuxième, troisième, quatrième, etc. s'appellent des adjectifs numéraux ordinaux, et servent à préciser le rang d'un objet dans une collection, ou l'ordre d'un événement dans une succession.
Grand ordinal dénombrableEn mathématiques, et plus particulièrement en théorie des ensembles, il existe de nombreuses méthodes de description des ordinaux dénombrables. Les plus petits (jusqu'à ε0) peuvent être exprimés (de façon utile et non circulaire) à l'aide de leur forme normale de Cantor. Au-delà, on parle de grands ordinaux dénombrables ; de nombreux grands ordinaux (le plus souvent en rapport avec la théorie de la démonstration) possèdent des notations ordinales calculables.
Nombre epsilonEn mathématiques, les nombres epsilon sont une collection de nombres transfinis définis par la propriété d'être des points fixes d'une application exponentielle. Ils ne peuvent donc pas être atteints à partir de 0 et d'un nombre fini d'exponentiations (et d'opérations « plus faibles », comme l'addition et la multiplication). La forme de base fut introduite par Georg Cantor dans le contexte du calcul sur les ordinaux comme étant les ordinaux ε satisfaisant l'équation où ω est le plus petit ordinal infini ; une extension aux nombres surréels a été découverte par John Horton Conway.
Espace à bases dénombrables de voisinagesEn mathématiques, un espace topologique X est à bases dénombrables de voisinages si tout point x de X possède une base de voisinages dénombrable, c'est-à-dire s'il existe une suite V, V, V, ... de voisinages de x telle que tout voisinage de x contienne l'un des V. Cette notion a été introduite en 1914 par Felix Hausdorff. Tout espace métrique (donc aussi tout espace métrisable) est à bases dénombrables de voisinages (prendre par exemple V = une boule (ouverte ou fermée) de centre x et de rayon 2).
Espace à base dénombrableEn mathématiques, plus précisément en topologie, un espace est dit à base dénombrable si sa topologie admet une base dénombrable. La plupart des espaces usuels de l'analyse et beaucoup d'espaces en analyse fonctionnelle sont à base dénombrable. Tout espace à base dénombrable est à la fois séparable, à bases dénombrables de voisinages et de Lindelöf (en particulier, pour un espace à base dénombrable, les trois propriétés quasi-compact/dénombrablement compact/séquentiellement compact sont équivalentes).