In topology, a second-countable space, also called a completely separable space, is a topological space whose topology has a countable base. More explicitly, a topological space is second-countable if there exists some countable collection of open subsets of such that any open subset of can be written as a union of elements of some subfamily of . A second-countable space is said to satisfy the second axiom of countability. Like other countability axioms, the property of being second-countable restricts the number of open sets that a space can have. Many "well-behaved" spaces in mathematics are second-countable. For example, Euclidean space (Rn) with its usual topology is second-countable. Although the usual base of open balls is uncountable, one can restrict to the collection of all open balls with rational radii and whose centers have rational coordinates. This restricted set is countable and still forms a basis. Second-countability is a stronger notion than first-countability. A space is first-countable if each point has a countable local base. Given a base for a topology and a point x, the set of all basis sets containing x forms a local base at x. Thus, if one has a countable base for a topology then one has a countable local base at every point, and hence every second-countable space is also a first-countable space. However any uncountable discrete space is first-countable but not second-countable. Second-countability implies certain other topological properties. Specifically, every second-countable space is separable (has a countable dense subset) and Lindelöf (every open cover has a countable subcover). The reverse implications do not hold. For example, the lower limit topology on the real line is first-countable, separable, and Lindelöf, but not second-countable. For metric spaces, however, the properties of being second-countable, separable, and Lindelöf are all equivalent. Therefore, the lower limit topology on the real line is not metrizable.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (13)
CS-101: Advanced information, computation, communication I
Discrete mathematics is a discipline with applications to almost all areas of study. It provides a set of indispensable tools to computer science in particular. This course reviews (familiar) topics a
MATH-318: Set theory
Set Theory as a foundational system for mathematics. ZF, ZFC and ZF with atoms. Relative consistency of the Axiom of Choice, the Continuum Hypothesis, the reals as a countable union of countable sets,
MATH-432: Probability theory
The course is based on Durrett's text book Probability: Theory and Examples.
It takes the measure theory approach to probability theory, wherein expectations are simply abstract integrals.
Afficher plus
Concepts associés (20)
Variété (géométrie)
En mathématiques, et plus particulièrement en géométrie, la notion de variété peut être appréhendée intuitivement comme la généralisation de la classification qui établit qu'une courbe est une variété de dimension 1 et une surface est une variété de dimension 2. Une variété de dimension n, où n désigne un entier naturel, est un espace topologique localement euclidien, c'est-à-dire dans lequel tout point appartient à une région qui s'apparente à un tel espace.
Cube de Hilbert
En topologie, on appelle cube de Hilbert l'espace produit muni de la topologie produit, autrement dit : l'espace des suites à valeurs dans [0, 1], muni de la topologie de la convergence simple. D'après le théorème de Tykhonov, c'est un espace compact. Il est homéomorphe au sous-espace suivant de l, pour tous : Il est donc métrisable et par conséquent (puisqu'il est compact), séparable et possède la propriété suivante : Cela fournit en particulier un moyen commode pour compactifier les espaces métrisables séparables, et aussi un critère pour les classifier selon leur complexité ; par exemple un espace est polonais si et seulement s'il est homéomorphe à l'intersection d'une suite d'ouverts de K.
Axiom of countability
In mathematics, an axiom of countability is a property of certain mathematical objects that asserts the existence of a countable set with certain properties. Without such an axiom, such a set might not provably exist.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.