Concept

Espace à base dénombrable

Résumé
En mathématiques, plus précisément en topologie, un espace est dit à base dénombrable si sa topologie admet une base dénombrable. La plupart des espaces usuels de l'analyse et beaucoup d'espaces en analyse fonctionnelle sont à base dénombrable. Propriétés
  • Tout espace à base dénombrable est à la fois séparable, à bases dénombrables de voisinages et de Lindelöf (en particulier, pour un espace à base dénombrable, les trois propriétés quasi-compact/dénombrablement compact/séquentiellement compact sont équivalentes).
  • La réciproque est fausse : il existe même des espaces compacts séparables et à base dénombrable de voisinages qui ne sont pas à base dénombrable, comme l'. Cependant : ** pour un espace pseudométrisable (par exemple : un groupe topologique à bases dénombrables de voisinages) les trois propriétés Lindelöf/séparable/à base dénombrable sont équivalentes (cette équivalence ne s'étend pas à tous les espaces uniformisables à bases dénombrables de v
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Publications associées

Chargement

Personnes associées

Chargement

Unités associées

Chargement

Concepts associés

Chargement

Cours associés

Chargement

Séances de cours associées

Chargement