Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
En mathématiques, un espace topologique X est à bases dénombrables de voisinages si tout point x de X possède une base de voisinages dénombrable, c'est-à-dire s'il existe une suite V, V, V, ... de voisinages de x telle que tout voisinage de x contienne l'un des V. Cette notion a été introduite en 1914 par Felix Hausdorff. Tout espace métrique (donc aussi tout espace métrisable) est à bases dénombrables de voisinages (prendre par exemple V = une boule (ouverte ou fermée) de centre x et de rayon 2). Tout espace discret est à bases dénombrables de voisinages. Tout espace à base dénombrable est à bases dénombrables de voisinages mais la réciproque est fausse : l'espace vectoriel normé (donc métrique) l des suites bornées n'est pas à base dénombrable, ni même séparable ; un ensemble non dénombrable (comme l'ensemble des réels), muni de la topologie discrète, non plus. Tout espace parfaitement normal dénombrablement compact est à bases dénombrables de voisinages. La topologie cofinie sur un ensemble non dénombrable n'est pas à bases dénombrables de voisinages. Un autre contre-exemple est l'espace compact [0, ω] = ω + 1 (muni de la topologie de l'ordre) où ω désigne le premier ordinal non dénombrable. L'élément ω est un point limite du sous-ensemble [0, ω[ mais aucune suite d'éléments de ce sous-ensemble ne converge vers ω. En particulier, le point ω dans l'espace [0, ω] = ω + 1 n'a pas de base dénombrable de voisinages. Comme ω est le seul point de [0, ω] qui n'a pas de telle base, le sous-espace [0, ω[, lui, est à bases dénombrables de voisinages. Le bouquet de cercles R/Z, où la droite réelle R est munie de sa topologie usuelle et tous les entiers relatifs sont identifiés à 0, n'est pas à bases dénombrables de voisinages mais seulement « de Fréchet-Urysohn » ( ci-dessous).