Concept

Espace à bases dénombrables de voisinages

Résumé
En mathématiques, un espace topologique X est à bases dénombrables de voisinages si tout point x de X possède une base de voisinages dénombrable, c'est-à-dire s'il existe une suite V, V, V, ... de voisinages de x telle que tout voisinage de x contienne l'un des V. Cette notion a été introduite en 1914 par Felix Hausdorff. Tout espace métrique (donc aussi tout espace métrisable) est à bases dénombrables de voisinages (prendre par exemple V = une boule (ouverte ou fermée) de centre x et de rayon 2). Tout espace discret est à bases dénombrables de voisinages. Tout espace à base dénombrable est à bases dénombrables de voisinages mais la réciproque est fausse : l'espace vectoriel normé (donc métrique) l des suites bornées n'est pas à base dénombrable, ni même séparable ; un ensemble non dénombrable (comme l'ensemble des réels), muni de la topologie discrète, non plus. Tout espace parfaitement normal dénombrablement compact est à bases dénombrables de voisinages. La topologie cofinie sur un ensemble non dénombrable n'est pas à bases dénombrables de voisinages. Un autre contre-exemple est l'espace compact [0, ω] = ω + 1 (muni de la topologie de l'ordre) où ω désigne le premier ordinal non dénombrable. L'élément ω est un point limite du sous-ensemble [0, ω[ mais aucune suite d'éléments de ce sous-ensemble ne converge vers ω. En particulier, le point ω dans l'espace [0, ω] = ω + 1 n'a pas de base dénombrable de voisinages. Comme ω est le seul point de [0, ω] qui n'a pas de telle base, le sous-espace [0, ω[, lui, est à bases dénombrables de voisinages. Le bouquet de cercles R/Z, où la droite réelle R est munie de sa topologie usuelle et tous les entiers relatifs sont identifiés à 0, n'est pas à bases dénombrables de voisinages mais seulement « de Fréchet-Urysohn » ( ci-dessous).
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.