Sampling errorIn statistics, sampling errors are incurred when the statistical characteristics of a population are estimated from a subset, or sample, of that population. It can produced biased results. Since the sample does not include all members of the population, statistics of the sample (often known as estimators), such as means and quartiles, generally differ from the statistics of the entire population (known as parameters). The difference between the sample statistic and population parameter is considered the sampling error.
Cluster samplingIn statistics, cluster sampling is a sampling plan used when mutually homogeneous yet internally heterogeneous groupings are evident in a statistical population. It is often used in marketing research. In this sampling plan, the total population is divided into these groups (known as clusters) and a simple random sample of the groups is selected. The elements in each cluster are then sampled. If all elements in each sampled cluster are sampled, then this is referred to as a "one-stage" cluster sampling plan.
BandlimitingBandlimiting refers to a process which reduces the energy of a signal to an acceptably low level outside of a desired frequency range. Bandlimiting is an essential part of many applications in signal processing and communications. Examples include controlling interference between radio frequency communications signals, and managing aliasing distortion associated with sampling for digital signal processing. A bandlimited signal is, strictly speaking, a signal with zero energy outside of a defined frequency range.
Survey samplingIn statistics, survey sampling describes the process of selecting a sample of elements from a target population to conduct a survey. The term "survey" may refer to many different types or techniques of observation. In survey sampling it most often involves a questionnaire used to measure the characteristics and/or attitudes of people. Different ways of contacting members of a sample once they have been selected is the subject of survey data collection.
Reconstruction filterIn a mixed-signal system (analog and digital), a reconstruction filter, sometimes called an anti-imaging filter, is used to construct a smooth analog signal from a digital input, as in the case of a digital to analog converter (DAC) or other sampled data output device. The sampling theorem describes why the input of an ADC requires a low-pass analog electronic filter, called the anti-aliasing filter: the sampled input signal must be bandlimited to prevent aliasing (here meaning waves of higher frequency being recorded as a lower frequency).
Non-line-of-sight propagationNon-line-of-sight (NLOS) radio propagation occurs outside of the typical line-of-sight (LOS) between the transmitter and receiver, such as in ground reflections. Near-line-of-sight (also NLOS) conditions refer to partial obstruction by a physical object present in the innermost Fresnel zone. Obstacles that commonly cause NLOS propagation include buildings, trees, hills, mountains, and, in some cases, high voltage electric power lines.
Anti-aliasing filterAn anti-aliasing filter (AAF) is a filter used before a signal sampler to restrict the bandwidth of a signal to satisfy the Nyquist–Shannon sampling theorem over the band of interest. Since the theorem states that unambiguous reconstruction of the signal from its samples is possible when the power of frequencies above the Nyquist frequency is zero, a brick wall filter is an idealized but impractical AAF. A practical AAF makes a trade off between reduced bandwidth and increased aliasing.
SuréchantillonnageLe suréchantillonnage ou sur-échantillonnage est une technique particulière d'échantillonnage. Elle consiste à échantillonner le signal à une fréquence très élevée, beaucoup plus que ne l'exigerait le théorème de Shannon. Le suréchantillonnage permet de : Faciliter la conception du filtre anticrènelage, (ou antirepliement, ou encore anti-aliasing) ; Diminuer le bruit présent dans la bande utile et d'augmenter le rapport signal sur bruit. Il est employé dans les convertisseurs sigma-delta.
Computational complexityIn computer science, the computational complexity or simply complexity of an algorithm is the amount of resources required to run it. Particular focus is given to computation time (generally measured by the number of needed elementary operations) and memory storage requirements. The complexity of a problem is the complexity of the best algorithms that allow solving the problem. The study of the complexity of explicitly given algorithms is called analysis of algorithms, while the study of the complexity of problems is called computational complexity theory.
Universal Mobile Telecommunications SystemL’Universal Mobile Telecommunications System (UMTS) est l'une des technologies de téléphonie mobile de troisième génération (3G). Elle est basée sur la technologie W-CDMA, standardisée par le 3GPP et constitue l'implémentation dominante, d'origine européenne, des spécifications IMT-2000 de l'UIT pour les systèmes radio cellulaires 3G. L'UMTS est parfois appelé 3GSM, soulignant la filiation qui a été assurée entre l'UMTS et le standard GSM auquel il succède. Elle est également appelée 3G, pour troisième génération.