Forme de connexionEn géométrie différentielle, une 1-forme de connexion est une forme différentielle sur un -fibré principal qui vérifie certains axiomes. La donnée d'une forme de connexion permet de parler, entre autres, de courbure, de torsion, de dérivée covariante, de relevé horizontal, de transport parallèle, d'holonomie et de théorie de jauge. La notion de forme de connexion est intimement reliée à la notion de connexion d'Ehresmann. Soient : un groupe de Lie ; l'élément identité de ; l'algèbre de Lie de ; la représentation adjointe de sur ; une variété différentielle ; un -fibré principal sur .
Connexion (mathématiques)En géométrie différentielle, la connexion est un outil pour réaliser le transport parallèle. Il existe plusieurs présentations qui dépendent de l'utilisation faite. Cette notion a été développée au début des années 1920 par Élie Cartan et Hermann Weyl (avec comme cas particulier celle de connexion affine), puis reformulée en 1951 par Charles Ehresmann et Jean-Louis Koszul. Connexion de Koszul La connexion de Koszul est un opérateur sur des espaces de sections.
Connection (principal bundle)In mathematics, and especially differential geometry and gauge theory, a connection is a device that defines a notion of parallel transport on the bundle; that is, a way to "connect" or identify fibers over nearby points. A principal G-connection on a principal G-bundle P over a smooth manifold M is a particular type of connection which is compatible with the action of the group G. A principal connection can be viewed as a special case of the notion of an Ehresmann connection, and is sometimes called a principal Ehresmann connection.
Connexion de KoszulEn géométrie différentielle, une connexion (de Koszul) est un opérateur sur les sections d'un fibré vectoriel. Cette notion a été introduite par Jean-Louis Koszul en 1950 et formalise le transport parallèle de vecteurs le long d'une courbe en termes d'équation différentielle ordinaire. Les connexions sont des objets localement définis auxquels sont associées les notions de courbure et de torsion. L'un des exemples les plus simples de connexions de Koszul sans torsion est la connexion de Levi-Civita naturellement définie sur le fibré tangent de toute variété riemannienne.
Débit binaireLe débit binaire est une mesure de la quantité de données numériques transmises par unité de temps. Selon ses définitions normatives, il s'exprime en bits par seconde (bit/s, b/s ou bps) ou un de ses multiples en employant les préfixes du Système international (SI) : kb/s (kilobits par seconde), Mb/s (mégabits par seconde) et ainsi de suite. Dans le domaine de l'informatique, le débit est parfois exprimé en octets par seconde. Un octet équivaut à 8 bits, nombre de bits correspondant aux premières et aux plus simples des machines, et permettant de transmettre un caractère alphanumérique.
Traffic contractIf a network service (or application) wishes to use a broadband network (an ATM network in particular) to transport a particular kind of traffic, it must first inform the network about what kind of traffic is to be transported, and the performance requirements of that traffic. The application presents this information to the network in the form of a traffic contract. When a connection is requested by an application, the application indicates to the network: The Type of Service required.
Variable bitrateVariable bitrate (ou Variable bit rate, ou encore VBR), est un terme anglais que l'on peut traduire en français par : « taux d'échantillonnage variable », en opposition au constant bitrate (CBR). Lors de la numérisation d'un signal, l'utilisation d'un taux (ou d'une fréquence) d'échantillonnage variable consiste à adapter le nombre d'échantillons prélevés sur le signal, à la complexité locale (ou instantanée) de celui-ci. Ceci s'oppose à la technique plus simple, Constant bit rate ou CBR, dans laquelle le taux d'échantillonnage est fixe.
Orienté connexionDans les télécommunications, l'orienté connexion décrit un moyen de transmettre des données dans lequel : les appareils à chaque extrémité, utilisent un protocole préliminaire pour établir une connexion de bout en bout avant que les données soient envoyées ; les données sont envoyées le long d'un même chemin pendant la communication. Le service offert par un protocole orienté connexion est souvent, mais pas toujours, un service réseau « fiable », qui fournit la garantie que les données arriveront dans le bon ordre.
Connexion de Levi-CivitaEn géométrie riemannienne, la connexion de Levi-Civita est une connexion de Koszul naturellement définie sur toute variété riemannienne ou par extension sur toute variété pseudo-riemannienne. Ses propriétés caractérisent la variété riemannienne. Notamment, les géodésiques, courbes minimisant localement la distance riemannienne, sont exactement les courbes pour lesquelles le vecteur vitesse est parallèle. De plus, la courbure de la variété se définit à partir de cette connexion ; des conditions sur la courbure imposent des contraintes topologiques sur la variété.
Méthode d'EulerEn mathématiques, la méthode d'Euler, nommée ainsi en l'honneur du mathématicien Leonhard Euler (1707 — 1783), est une procédure numérique pour résoudre par approximation des équations différentielles du premier ordre avec une condition initiale. C'est la plus simple des méthodes de résolution numérique des équations différentielles. thumb|Illustration de la méthode d'Euler explicite : l'avancée se fait par approximation sur la tangente au point initial.