Loi normale multidimensionnelleEn théorie des probabilités, on appelle loi normale multidimensionnelle, ou normale multivariée ou loi multinormale ou loi de Gauss à plusieurs variables, la loi de probabilité qui est la généralisation multidimensionnelle de la loi normale. gauche|vignette|Différentes densités de lois normales en un dimension. gauche|vignette|Densité d'une loi gaussienne en 2D. Une loi normale classique est une loi dite « en cloche » en une dimension.
Critère d'information bayésienLe critère d'information bayésien (en anglais bayesian information criterion, en abrégé BIC), aussi appelé critère d'information de Schwarz, est un critère d'information dérivé du critère d'information d'Akaike proposé par en 1978. À la différence du critère d'information d'Akaike, la pénalité dépend de la taille de l'échantillon et pas seulement du nombre de paramètres. Il s'écrit : avec la vraisemblance du modèle estimée, le nombre d'observations dans l'échantillon et le nombre de paramètres libres du modèle.
Loi inverse-gammaDans la Théorie des probabilités et en statistiques, la distribution inverse-gamma est une famille de lois de probabilité continues à deux paramètres sur la demi-droite des réels positifs. Il s'agit de l'inverse d'une variable aléatoire distribuée selon une distribution Gamma. La densité de probabilité de la loi inverse-gamma est définie sur le support par: où est un paramètre de forme et un paramètre d'intensité, c'est-à-dire l'inverse d'un paramètre d'échelle.
Distribution multimodalevignette|Exemple de distribution bimodale de minerais d'or. X : teneur en g/t ; Y : production en tonnes. Le caractère bimodal définit deux groupes de populations statistiques résultant de deux phénomènes différents. En probabilités et statistique, une distribution multimodale est une distribution statistique présentant plusieurs modes. vignette| Histogramme bimodal vignette|Dans ce cas précis, une distribution bimodale un mélange de deux distributions normales avec la même variance mais des moyennes différentes.
Compound probability distributionIn probability and statistics, a compound probability distribution (also known as a mixture distribution or contagious distribution) is the probability distribution that results from assuming that a random variable is distributed according to some parametrized distribution, with (some of) the parameters of that distribution themselves being random variables. If the parameter is a scale parameter, the resulting mixture is also called a scale mixture.
Lomax distributionThe Lomax distribution, conditionally also called the Pareto Type II distribution, is a heavy-tail probability distribution used in business, economics, actuarial science, queueing theory and Internet traffic modeling. It is named after K. S. Lomax. It is essentially a Pareto distribution that has been shifted so that its support begins at zero. The probability density function (pdf) for the Lomax distribution is given by with shape parameter and scale parameter .
Loi exponentielleUne loi exponentielle modélise la durée de vie d'un phénomène sans mémoire, ou sans vieillissement, ou sans usure : la probabilité que le phénomène dure au moins s + t heures (ou n'importe quelle autre unité de temps) sachant qu'il a déjà duré t heures sera la même que la probabilité de durer s heures à partir de sa mise en fonction initiale. En d'autres termes, le fait que le phénomène ait duré pendant t heures ne change rien à son espérance de vie à partir du temps t.
Test du rapport de vraisemblanceEn statistiques, le test du rapport de vraisemblance est un test statistique qui permet de tester un modèle paramétrique contraint contre un non contraint. Si on appelle le vecteur des paramètres estimés par la méthode du maximum de vraisemblance, on considère un test du type : contre On définit alors l'estimateur du maximum de vraisemblance et l'estimateur du maximum de vraisemblance sous .
Coefficient de déterminationvignette|Illustration du coefficient de détermination pour une régression linéaire. Le coefficient de détermination est égal à 1 moins le rapport entre la surface des carrés bleus et la surface des carrés rouges. En statistique, le coefficient de détermination linéaire de Pearson, noté R ou r, est une mesure de la qualité de la prédiction d'une régression linéaire. où n est le nombre de mesures, la valeur de la mesure , la valeur prédite correspondante et la moyenne des mesures.
Phase-type distributionA phase-type distribution is a probability distribution constructed by a convolution or mixture of exponential distributions. It results from a system of one or more inter-related Poisson processes occurring in sequence, or phases. The sequence in which each of the phases occurs may itself be a stochastic process. The distribution can be represented by a random variable describing the time until absorption of a Markov process with one absorbing state. Each of the states of the Markov process represents one of the phases.