Système de reconnaissance facialeUn système de reconnaissance faciale est une application logicielle visant à reconnaître automatiquement une personne grâce à son visage. Il s'agit d'un sujet particulièrement étudié en vision par ordinateur, avec de très nombreuses publications et brevets, et des conférences spécialisées. La reconnaissance de visage a de nombreuses applications en vidéosurveillance, biométrie, robotique, indexation d'images et de vidéos, , etc. Ces systèmes sont généralement utilisés à des fins de sécurité pour déverrouiller ordinateur/mobile/console, mais aussi en domotique.
Circular motionIn physics, circular motion is a movement of an object along the circumference of a circle or rotation along a circular path. It can be uniform, with a constant angular rate of rotation and constant speed, or non-uniform with a changing rate of rotation. The rotation around a fixed axis of a three-dimensional body involves the circular motion of its parts. The equations of motion describe the movement of the center of mass of a body. In circular motion, the distance between the body and a fixed point on the surface remains the same.
Cinéma en reliefLe cinéma en relief, cinéma en 3D (trois dimensions), ou cinéma stéréoscopique, permet d'enregistrer la réalité avec ses trois dimensions, qui sont la hauteur, la largeur et la profondeur. Les dispositifs mis en œuvre sont calqués sur le principe de la vision binoculaire naturelle de l'être humain. Dès l'invention de la photographie en 1839, des techniques de prise de vue en relief sont mises au point, et des visionneuses appelées stéréoscopes ont été créées pour les observer.
DémarcheLa démarche est le motif du mouvement des membres des animaux pendant leur déplacement. La plupart des animaux utilisent différents types de démarches en fonction de la vitesse, du terrain, des besoins de manœuvrer et de l'efficacité énergétique. Les diagrammes de démarche de Milton Hildebrand sont généralement utilisés par les physiologistes dans l'étude de la locomotion. Il existe différents dispositifs permettant d'étudier les démarches. Parmi les plus anciens on peut citer le fusil photographique d'Étienne-Jules Marey en 1872, puis par Eadweard Muybridge en 1878.
FouléeLa foulée désigne l'enjambée lors de la course à pied. La première phase est un appui au sol de l'un des pieds Elle débute par la réception, généralement sur le talon, en avant du centre de gravité du coureur ; la réception amortit le choc entre le pied et le sol, l'amorti est en partie produit par la flexion du genou à laquelle s'oppose le quadriceps en contraction excentrique.
Analyse en composantes principalesL'analyse en composantes principales (ACP ou PCA en anglais pour principal component analysis), ou, selon le domaine d'application, transformation de Karhunen–Loève (KLT) ou transformation de Hotelling, est une méthode de la famille de l'analyse des données et plus généralement de la statistique multivariée, qui consiste à transformer des variables liées entre elles (dites « corrélées » en statistique) en nouvelles variables décorrélées les unes des autres. Ces nouvelles variables sont nommées « composantes principales » ou axes principaux.
BiométrieLe mot biométrie signifie littéralement « mesure du vivant » et désigne dans un sens très large l'étude quantitative des êtres vivants. Parmi les principaux domaines d'application de la biométrie, on peut citer l'agronomie, l'anthropologie, l'écologie et la médecine. L'usage de ce terme se rapporte de plus en plus à l'usage de ces techniques à des fins de reconnaissance, d'authentification et d'identification, le sens premier du mot biométrie étant alors repris par le terme biostatistique.
Multilinear subspace learningMultilinear subspace learning is an approach for disentangling the causal factor of data formation and performing dimensionality reduction. The Dimensionality reduction can be performed on a data tensor that contains a collection of observations have been vectorized, or observations that are treated as matrices and concatenated into a data tensor. Here are some examples of data tensors whose observations are vectorized or whose observations are matrices concatenated into data tensor s (2D/3D), video sequences (3D/4D), and hyperspectral cubes (3D/4D).
Modèle statistiqueUn modèle statistique est une description mathématique approximative du mécanisme qui a généré les observations, que l'on suppose être un processus stochastique et non un processus déterministe. Il s’exprime généralement à l’aide d’une famille de distributions (ensemble de distributions) et d’hypothèses sur les variables aléatoires X1, . . ., Xn. Chaque membre de la famille est une approximation possible de F : l’inférence consiste donc à déterminer le membre qui s’accorde le mieux avec les données.
ModélisationLa modélisation est la conception et l'utilisation d'un modèle. Selon son objectif (représentation simplifiée, compréhension, prédiction) et les moyens utilisés, la modélisation est dite mathématique, géométrique, 3D, empirique, mécaniste ( modélisation de réseau trophique dans un écosystème), cinématique... Elle nécessite généralement d'être calée par des observations ou mesures faites , lesquelles servent aussi à paramétrer, calibrer ou ajuster le modèle, par exemple en intégrant des facteurs d'influences qui s'avèreraient nécessaires.