Feature (computer vision)In computer vision and , a feature is a piece of information about the content of an image; typically about whether a certain region of the image has certain properties. Features may be specific structures in the image such as points, edges or objects. Features may also be the result of a general neighborhood operation or feature detection applied to the image. Other examples of features are related to motion in image sequences, or to shapes defined in terms of curves or boundaries between different image regions.
Système de reconnaissance facialeUn système de reconnaissance faciale est une application logicielle visant à reconnaître automatiquement une personne grâce à son visage. Il s'agit d'un sujet particulièrement étudié en vision par ordinateur, avec de très nombreuses publications et brevets, et des conférences spécialisées. La reconnaissance de visage a de nombreuses applications en vidéosurveillance, biométrie, robotique, indexation d'images et de vidéos, , etc. Ces systèmes sont généralement utilisés à des fins de sécurité pour déverrouiller ordinateur/mobile/console, mais aussi en domotique.
Méthode des k plus proches voisinsEn intelligence artificielle, plus précisément en apprentissage automatique, la méthode des k plus proches voisins est une méthode d’apprentissage supervisé. En abrégé KPPV ou k-PPV en français, ou plus fréquemment k-NN ou KNN, de l'anglais k-nearest neighbors. Dans ce cadre, on dispose d’une base de données d'apprentissage constituée de N couples « entrée-sortie ». Pour estimer la sortie associée à une nouvelle entrée x, la méthode des k plus proches voisins consiste à prendre en compte (de façon identique) les k échantillons d'apprentissage dont l’entrée est la plus proche de la nouvelle entrée x, selon une distance à définir.
Système d'exploitation temps réelUn système d'exploitation temps réel, en anglais RTOS pour real-time operating system (généralement prononcé à l’anglaise, en séparant le R de l’acronyme : Are-toss), est un système d'exploitation pour lequel le temps maximum entre un stimulus d'entrée et une réponse de sortie est précisément déterminé. Ces systèmes d'exploitation multitâches sont destinés à des applications temps réel : systèmes embarqués (thermostats programmables, contrôleurs électroménagers, téléphones mobiles, robots industriels, vaisseaux spatiaux, systèmes de contrôle commande industriel, matériel de recherche scientifique).
Flux optiquevignette|400px|Le flux optique perçu par un observateur en rotation (dans ce cas, une mouche). Les flèches représentent la direction et la vitesse du mouvement. Le flux optique est le mouvement apparent des objets, surfaces et contours d'une scène visuelle, causé par le mouvement relatif entre un observateur (l'œil ou une caméra) et la scène. Le concept de flux optique a été étudié dans les années 1940 et des travaux ont été publiés dans American psychologist par James J. Gibson.
Sélection de caractéristiqueLa sélection de caractéristique (ou sélection d'attribut ou de variable) est un processus utilisé en apprentissage automatique et en traitement de données. Il consiste, étant donné des données dans un espace de grande dimension, à trouver un sous-sensemble de variables pertinentes. C'est-à-dire que l'on cherche à minimiser la perte d'information venant de la suppression de toutes les autres variables. C'est une méthode de réduction de la dimensionnalité. Extraction de caractéristique Catégorie:Apprentissage
Recherche des plus proches voisinsLa recherche des plus proches voisins, ou des k plus proches voisins, est un problème algorithmique classique. De façon informelle le problème consiste, étant donné un point à trouver, dans un ensemble d'autres points, quels sont les k plus proches. La recherche de voisinage est utilisée dans de nombreux domaines, tels la reconnaissance de formes, le clustering, l'approximation de fonctions, la prédiction de séries temporelles et même les algorithmes de compression (recherche d'un groupe de données le plus proche possible du groupe de données à compresser pour minimiser l'apport d'information).
Pose (computer vision)In the fields of computing and computer vision, pose (or spatial pose) represents the position and orientation of an object, usually in three dimensions. Poses are often stored internally as transformation matrices. The term “pose” is largely synonymous with the term “transform”, but a transform may often include scale, whereas pose does not. In computer vision, the pose of an object is often estimated from camera input by the process of pose estimation.
K-moyennesLe partitionnement en k-moyennes (ou k-means en anglais) est une méthode de partitionnement de données et un problème d'optimisation combinatoire. Étant donnés des points et un entier k, le problème est de diviser les points en k groupes, souvent appelés clusters, de façon à minimiser une certaine fonction. On considère la distance d'un point à la moyenne des points de son cluster ; la fonction à minimiser est la somme des carrés de ces distances.
Calibration de caméraEn , l'opération de calibration de caméra revient à modéliser le processus de formation des s, c'est-à-dire trouver la relation entre les coordonnées spatiales d'un point de l'espace avec le point associé dans l'image prise par la caméra. Le terme calibration est un anglicisme dont l'équivalent français est étalonnage. On note aussi que le terme calibrage est couramment utilisé. Plusieurs modèles décrivant le processus de formation des images existent. Le plus simple est le modèle du sténopé ou modèle pin-hole dans la littérature anglo-saxonne.