Chaleur (thermodynamique)vignette|Le Soleil et la Terre constituent un exemple continu de processus de chauffage. Une partie du rayonnement thermique du Soleil frappe et chauffe la Terre. Par rapport au Soleil, la Terre a une température beaucoup plus basse et renvoie donc beaucoup moins de rayonnement thermique au Soleil. La chaleur dans ce processus peut être quantifiée par la quantité nette et la direction (Soleil vers Terre) d'énergie échangée lors du transfert thermique au cours d'une période de temps donnée.
Condition aux limites de NeumannEn mathématiques, une condition aux limites de Neumann (nommée d'après Carl Neumann) est imposée à une équation différentielle ou à une équation aux dérivées partielles lorsque l'on spécifie les valeurs des dérivées que la solution doit vérifier sur les frontières/limites du domaine. Pour une équation différentielle, par exemple : la condition aux limites de Neumann sur l'intervalle s'exprime par : où et sont deux nombres donnés.
Équation de la chaleurEn mathématiques et en physique théorique, l'équation de la chaleur est une équation aux dérivées partielles parabolique, pour décrire le phénomène physique de conduction thermique, introduite initialement en 1807 par Joseph Fourier, après des expériences sur la propagation de la chaleur, suivies par la modélisation de l'évolution de la température avec des séries trigonométriques, appelés depuis séries de Fourier et transformées de Fourier, permettant une grande amélioration à la modélisation mathématique
Potentiel thermodynamiqueEn thermodynamique, un potentiel thermodynamique est une fonction d'état particulière qui permet de prédire l'évolution et l'équilibre d'un système thermodynamique, et à partir de laquelle on peut déduire toutes les propriétés (comme les capacités thermiques, le coefficient de dilatation, le coefficient de compressibilité) du système à l'équilibre. Les divers potentiels thermodynamiques correspondent aux divers jeux de variables d'état utilisés dans l'étude des processus thermodynamiques.
Condition aux limites mêléeEn mathématiques, une condition aux limites mêlée ou mixte correspond à la juxtaposition de différentes conditions aux limites sur différentes parties du bord (ou frontière) du domaine dans lequel est posée une équation aux dérivées partielles ou une équation différentielle ordinaire. Par exemple, si l'on considère les vibrations d'une corde élastique de longueur L se déplaçant à une vitesse c dont une extrémité (en 0) est fixe, et l'autre (en L) est attachée à un anneau oscillant librement le long d'une tige droite, on a alors une équation sur un intervalle [0,L].
Thermodynamic equationsThermodynamics is expressed by a mathematical framework of thermodynamic equations which relate various thermodynamic quantities and physical properties measured in a laboratory or production process. Thermodynamics is based on a fundamental set of postulates, that became the laws of thermodynamics. One of the fundamental thermodynamic equations is the description of thermodynamic work in analogy to mechanical work, or weight lifted through an elevation against gravity, as defined in 1824 by French physicist Sadi Carnot.
Heat fluxIn physics and engineering, heat flux or thermal flux, sometimes also referred to as heat flux density, heat-flow density or heat flow rate intensity, is a flow of energy per unit area per unit time. Its SI units are watts per square metre (W/m2). It has both a direction and a magnitude, and so it is a vector quantity. To define the heat flux at a certain point in space, one takes the limiting case where the size of the surface becomes infinitesimally small.
Cycle thermodynamiqueUn cycle thermodynamique est une suite de transformations successives qui part d'un système thermodynamique dans un état donné, le transforme et le ramène finalement à son état initial, de manière à pouvoir recommencer le cycle. Au cours du cycle, le système voit sa température, sa pression ou d'autres paramètres d'état varier, tandis qu'il échange du travail et réalise un transfert thermique avec l'extérieur. Il existe de nombreux cycles thermodynamiques, dont voici quelques-uns.
Relativistic heat conductionRelativistic heat conduction refers to the modelling of heat conduction (and similar diffusion processes) in a way compatible with special relativity. In special (and general) relativity, the usual heat equation for non-relativistic heat conduction must be modified, as it leads to faster-than-light signal propagation. Relativistic heat conduction, therefore, encompasses a set of models for heat propagation in continuous media (solids, fluids, gases) that are consistent with relativistic causality, namely the principle that an effect must be within the light-cone associated to its cause.
Équation de SchrödingerL'équation de Schrödinger, conçue par le physicien autrichien Erwin Schrödinger en 1925, est une équation fondamentale en mécanique quantique. Elle décrit l'évolution dans le temps d'une particule massive non relativiste, et remplit ainsi le même rôle que la relation fondamentale de la dynamique en mécanique classique. Au début du , il était devenu clair que la lumière présentait une dualité onde-corpuscule, c'est-à-dire qu'elle pouvait se manifester, selon les circonstances, soit comme une particule, le photon, soit comme une onde électromagnétique.