Géométrie algébriqueLa géométrie algébrique est un domaine des mathématiques qui, historiquement, s'est d'abord intéressé à des objets géométriques (courbes, surfaces...) composés des points dont les coordonnées vérifiaient des équations ne faisant intervenir que des sommes et des produits (par exemple le cercle unité dans le plan rapporté à un repère orthonormé admet pour équation ). La simplicité de cette définition fait qu'elle embrasse un grand nombre d'objets et qu'elle permet de développer une théorie riche.
Asymptotic safety in quantum gravityAsymptotic safety (sometimes also referred to as nonperturbative renormalizability) is a concept in quantum field theory which aims at finding a consistent and predictive quantum theory of the gravitational field. Its key ingredient is a nontrivial fixed point of the theory's renormalization group flow which controls the behavior of the coupling constants in the ultraviolet (UV) regime and renders physical quantities safe from divergences.
Conditions sur l'énergieEn relativité générale, les conditions sur l'énergie sont un ensemble de conditions susceptibles de contribuer à la description de la matière qui peut exister dans l'univers, ou plus généralement dans tout espace-temps étudié. En pratique, ces conditions sont exprimées par des inégalités précisant l'objet mathématique qui décrit le comportement de la matière, le tenseur énergie-impulsion. Un certain nombre de propriétés de l'espace-temps sont en effet déterminées par certaines des caractéristiques de la matière qui l'emplit.
Schwarzschild geodesicsIn general relativity, Schwarzschild geodesics describe the motion of test particles in the gravitational field of a central fixed mass that is, motion in the Schwarzschild metric. Schwarzschild geodesics have been pivotal in the validation of Einstein's theory of general relativity. For example, they provide accurate predictions of the anomalous precession of the planets in the Solar System and of the deflection of light by gravity. Schwarzschild geodesics pertain only to the motion of particles of masses so small they contribute little to the gravitational field.
Métrique de SchwarzschildEn astrophysique, dans le cadre de la relativité générale, la métrique de Schwarzschild est une solution des équations d'Einstein. L'espace-temps, dont la métrique décrit la géométrie, a quatre dimensions ; il est vide mais courbe bien qu'asymptotiquement plat ; il est à symétrie sphérique et stationnaire ; il est statique à l'extérieur d'un rayon critique : le rayon de Schwarzschild ; et, lorsque le vide s'étend au-delà de ce rayon, la métrique met en évidence un trou noir : le trou noir de Schwarzschild .
Dérivée extérieureEn mathématiques, la dérivée extérieure, opérateur de la topologie différentielle et de la géométrie différentielle, étend le concept de la différentielle d'une fonction aux formes différentielles de degré quelconque. Elle permet de définir les formes différentielles fermées et exactes. Elle est importante dans la théorie de l'intégration sur les variétés, et elle est la différentielle employée pour définir la cohomologie de De Rham et celle d'Alexander-Spanier. Sa forme actuelle fut inventée par Élie Cartan.
Tachyonic fieldIn physics, a tachyonic field, or simply tachyon, is a quantum field with an imaginary mass. Although tachyonic particles (particles that move faster than light) are a purely hypothetical concept that violate a number of essential physical principles, at least one field with imaginary mass, the Higgs field, is believed to exist. Under no circumstances do any excitations of tachyonic fields ever propagate faster than light—the presence or absence of a tachyonic (imaginary) mass has no effect on the maximum velocity of signals, and so unlike faster-than-light particles there is no violation of causality.
Physics applications of asymptotically safe gravityThe asymptotic safety approach to quantum gravity provides a nonperturbative notion of renormalization in order to find a consistent and predictive quantum field theory of the gravitational interaction and spacetime geometry. It is based upon a nontrivial fixed point of the corresponding renormalization group (RG) flow such that the running coupling constants approach this fixed point in the ultraviolet (UV) limit. This suffices to avoid divergences in physical observables.
Analyse non standardEn mathématiques, et plus précisément en analyse, l'analyse non standard est un ensemble d'outils développés depuis 1960 afin de traiter la notion d'infiniment petit de manière rigoureuse. Pour cela, une nouvelle notion est introduite, celle d'objet standard (s'opposant à celle d'objet non standard), ou plus généralement de modèle standard ou de modèle non standard. Cela permet de présenter les principaux résultats de l'analyse sous une forme plus intuitive que celle exposée traditionnellement depuis le .
Nordström's theory of gravitationIn theoretical physics, Nordström's theory of gravitation was a predecessor of general relativity. Strictly speaking, there were actually two distinct theories proposed by the Finnish theoretical physicist Gunnar Nordström, in 1912 and 1913 respectively. The first was quickly dismissed, but the second became the first known example of a metric theory of gravitation, in which the effects of gravitation are treated entirely in terms of the geometry of a curved spacetime.