Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur GraphSearch.
Causal exponentials play a fundamental role in classical system theory. Starting from those elementary building blocks, we propose a complete and self-contained signal processing formulation of exponential splines defined on a uniform grid. We specify the corresponding B-spline basis functions and investigate their reproduction properties (Green function and exponential polynomials); we also characterize their stability (Riesz bounds). We show that the exponential B-spline framework allows an exact implementation of continuous-time signal processing operators including convolution, differential operators, and modulation, by simple processing in the discrete B-spline domain. We derive efficient filtering algorithms for multiresolution signal extrapolation and approximation, extending earlier results for polynomial splines. Finally, we present a new asymptotic error formula that predicts the magnitude and the Nth-order decay of the -approximation error as a function of the knot spacing T.