Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
Causal exponentials play a fundamental role in classical system theory. Starting from those elementary building blocks, we propose a complete and self-contained signal processing formulation of exponential splines defined on a uniform grid. We specify the corresponding B-spline basis functions and investigate their reproduction properties (Green function and exponential polynomials); we also characterize their stability (Riesz bounds). We show that the exponential B-spline framework allows an exact implementation of continuous-time signal processing operators including convolution, differential operators, and modulation, by simple processing in the discrete B-spline domain. We derive efficient filtering algorithms for multiresolution signal extrapolation and approximation, extending earlier results for polynomial splines. Finally, we present a new asymptotic error formula that predicts the magnitude and the Nth-order decay of the -approximation error as a function of the knot spacing T.
Michaël Unser, Pakshal Narendra Bohra
Michaël Unser, Julien René Pierre Fageot, Virginie Sophie Uhlmann, Shayan Aziznejad